Ritsuko Komaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7221387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase I Trial of Definitive Concurrent Chemoradiotherapy and Trametinib for KRAS-Mutated Non-Small Cell Lung Cancer. Cancer Treatment and Research Communications, 2022, 30, 100514.	1.7	5
2	Postoperative Radiotherapy for Locally Advanced NSCLC: Implications for Shifting to Conformal, High-Risk Fields. Clinical Lung Cancer, 2021, 22, 225-233.e7.	2.6	2
3	Short Communication: Interim toxicity analysis for patients with limited stage small cell lung cancer (LSCLC) treated on CALGB 30610 (Alliance) / RTOG 0538. Lung Cancer, 2021, 156, 68-71.	2.0	8
4	Cancer associated macrophage-like cells and prognosis of esophageal cancer after chemoradiation therapy. Journal of Translational Medicine, 2020, 18, 413.	4.4	24
5	Rates of Overall Survival and Intracranial Control in the Magnetic Resonance Imaging Era for Patients With Limited-Stage Small Cell Lung Cancer With and Without Prophylactic Cranial Irradiation. JAMA Network Open, 2020, 3, e201929.	5.9	42
6	Single-Fraction Stereotactic vs Conventional Multifraction Radiotherapy for Pain Relief in Patients With Predominantly Nonspine Bone Metastases. JAMA Oncology, 2019, 5, 872.	7.1	146
7	Phase II Trial of Ipilimumab with Stereotactic Radiation Therapy for Metastatic Disease: Outcomes, Toxicities, and Low-Dose Radiation–Related Abscopal Responses. Cancer Immunology Research, 2019, 7, 1903-1909.	3.4	86
8	Prognostic Significance of Total Lymphocyte Count, Neutrophil-to-lymphocyte Ratio, and Platelet-to-lymphocyte Ratio in Limited-stage Small-cell Lung Cancer. Clinical Lung Cancer, 2019, 20, 117-123.	2.6	42
9	A pooled analysis of individual patient data from National Clinical Trials Network clinical trials of concurrent chemoradiotherapy for limitedâ€stage small cell lung cancer in elderly patients versus younger patients. Cancer, 2019, 125, 382-390.	4.1	14
10	My Path from Hiroshima to Houston. Practical Radiation Oncology, 2019, 9, 1-2.	2.1	1
11	Clinical and Dosimetric Factors Predicting Grade ≥2 Radiation Pneumonitis After Postoperative Radiotherapy for Patients With Non-Small Cell Lung Carcinoma. International Journal of Radiation Oncology Biology Physics, 2018, 101, 919-926.	0.8	34
12	Prognostic significance of pretreatment total lymphocyte count and neutrophil-to-lymphocyte ratio in extensive-stage small-cell lung cancer. Radiotherapy and Oncology, 2018, 126, 499-505.	0.6	56
13	Simultaneous Integrated Boost for Radiation Dose Escalation to the Gross Tumor Volume With Intensity Modulated (Photon) Radiation Therapy or Intensity Modulated Proton Therapy and Concurrent Chemotherapy for Stage II to III Non-Small Cell Lung Cancer: A Phase 1 Study. International Iournal of Radiation Oncology Biology Physics. 2018. 100. 730-737.	0.8	27
14	Severe lymphopenia during neoadjuvant chemoradiation for esophageal cancer: A propensity matched analysis of the relative risk of proton versus photon-based radiation therapy. Radiotherapy and Oncology, 2018, 128, 154-160.	0.6	109
15	Phase 2 Study of Stereotactic Body Radiation Therapy and Stereotactic Body Proton Therapy for High-Risk, Medically Inoperable, Early-Stage Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 101, 558-563.	0.8	55
16	Potentially Functional Variants of ATG16L2 Predict Radiation Pneumonitis and Outcomes in Patients with Non–Small Cell Lung Cancer after Definitive Radiotherapy. Journal of Thoracic Oncology, 2018, 13, 660-675.	1.1	29
17	Patient-reported lung symptoms as an early signal of impending radiation pneumonitis in patients with non-small cell lung cancer treated with chemoradiation: an observational study. Quality of Life Research, 2018, 27, 1563-1570.	3.1	12
18	Recurrence Risk Stratification After Preoperative Chemoradiation of Esophageal Adenocarcinoma. Annals of Surgery, 2018, 268, 289-295.	4.2	32

#	Article	IF	CITATIONS
19	Reirradiation of thoracic cancers with intensity modulated proton therapy. Practical Radiation Oncology, 2018, 8, 58-65.	2.1	34
20	Radiation Dose, Local Disease Progression, and Overall Survival in Patients With Inoperable Non-Small Cell Lung Cancer After Concurrent Chemoradiation Therapy. International Journal of Radiation Oncology Biology Physics, 2018, 100, 452-461.	0.8	11
21	RAD50 Expression Is Associated with Poor Clinical Outcomes after Radiotherapy for Resected Non–small Cell Lung Cancer. Clinical Cancer Research, 2018, 24, 341-350.	7.0	31
22	Influence of induction chemotherapy in trimodality therapy-eligible oesophageal cancer patients: secondary analysis of a randomised trial. British Journal of Cancer, 2018, 118, 331-337.	6.4	10
23	Early Metabolic Change after Induction Chemotherapy Predicts Histologic Response and Prognosis in Patients with Esophageal Cancer: Secondary Analysis of a Randomized Trial. Targeted Oncology, 2018, 13, 99-106.	3.6	10
24	Bayesian Adaptive Randomization Trial of Passive Scattering Proton Therapy and Intensity-Modulated Photon Radiotherapy for Locally Advanced Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2018, 36, 1813-1822.	1.6	243
25	Outcomes of re-irradiation for brain recurrence after prophylactic or therapeutic whole-brain irradiation for small cell lung Cancer: a retrospective analysis. Radiation Oncology, 2018, 13, 258.	2.7	8
26	Twice-daily Thoracic Radiotherapy for Limited-stage Small-cell Lung Cancer Does Not Increase the Incidence of Acute Severe Esophagitis. Clinical Lung Cancer, 2018, 19, e885-e891.	2.6	4
27	An economic analysis of Radiation Therapy Oncology Group 94-10: cost-efficacy of concurrent vs. sequential chemoradiotherapy. Journal of Radiation Oncology, 2018, 7, 195-201.	0.7	2
28	Is prophylactic cranial irradiation indicated for patients with extensive-stage small cell lung cancer with a complete response to first-line treatment?. Radiotherapy and Oncology, 2018, 127, 339-343.	0.6	4
29	Nomograms incorporating genetic variants in <scp>BMP</scp> /Smad4/Hamp pathway to predict disease outcomes after definitive radiotherapy for nonâ€small cell lung cancer. Cancer Medicine, 2018, 7, 2247-2255.	2.8	4
30	Actionable Locoregional Relapses after Therapy of Localized Esophageal Cancer: Insights from a Large Cohort. Oncology, 2018, 94, 345-353.	1.9	1
31	Hematologic variables associated with brain failure in patients with small-cell lung cancer. Radiotherapy and Oncology, 2018, 128, 505-512.	0.6	8
32	Prophylactic cranial irradiation after definitive chemoradiotherapy for limited-stage small cell lung cancer: Do all patients benefit?. Radiotherapy and Oncology, 2017, 122, 307-312.	0.6	48
33	Long-term outcome of phase I/II prospective study of dose-escalated proton therapy for early-stage non-small cell lung cancer. Radiotherapy and Oncology, 2017, 122, 274-280.	0.6	38
34	A Multi-institutional Analysis of Trimodality Therapy for Esophageal Cancer in Elderly Patients. International Journal of Radiation Oncology Biology Physics, 2017, 98, 820-828.	0.8	28
35	Definitive Chemoradiation Therapy for Esophageal Cancer in the Elderly: Clinical Outcomes for Patients Exceeding 80ÂYears Old. International Journal of Radiation Oncology Biology Physics, 2017, 98, 811-819.	0.8	41
36	Long-Term Outcomes of Salvage Stereotactic AblativeÂRadiotherapy for Isolated Lung Recurrence of Non–Small Cell Lung Cancer: A Phase II Clinical Trial. Journal of Thoracic Oncology, 2017, 12, 983-992.	1.1	51

#	Article	IF	CITATIONS
37	Dosimetric and clinical outcomes after volumetric modulated arc therapy for carcinoma of the thoracic esophagus. Advances in Radiation Oncology, 2017, 2, 325-332.	1.2	7
38	Multi-institutional analysis of radiation modality use and postoperative outcomes of neoadjuvant chemoradiation for esophageal cancer. Radiotherapy and Oncology, 2017, 123, 376-381.	0.6	81
39	¹⁸ F-FDG PET Response After Induction Chemotherapy Can Predict Who Will Benefit from Subsequent Esophagectomy After Chemoradiotherapy for Esophageal Adenocarcinoma. Journal of Nuclear Medicine, 2017, 58, 1756-1763.	5.0	18
40	Association of lung fluorodeoxyglucose uptake with radiation pneumonitis after concurrent chemoradiation for non-small cell lung cancer. Clinical and Translational Radiation Oncology, 2017, 4, 1-7.	1.7	10
41	Recursive Partitioning Analysis Identifies Pretreatment Risk Groups for the Utility of Induction Chemotherapy Before Definitive Chemoradiation Therapy in Esophageal Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 99, 407-416.	0.8	6
42	Lymphocyte Nadir and Esophageal Cancer Survival Outcomes After Chemoradiation Therapy. International Journal of Radiation Oncology Biology Physics, 2017, 99, 128-135.	0.8	184
43	A Prognostic Scoring Model for the Utility of Induction Chemotherapy Prior to Neoadjuvant Chemoradiotherapy in Esophageal Cancer. Journal of Thoracic Oncology, 2017, 12, 1001-1010.	1.1	16
44	Stereotactic Ablative Radiation Therapy is Highly Safe and Effective for Elderly Patients With Early-stage Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 98, 900-907.	0.8	37
45	Dosimetric comparison to the heart and cardiac substructure in a large cohort of esophageal cancer patients treated with proton beam therapy or Intensity-modulated radiation therapy. Radiotherapy and Oncology, 2017, 125, 48-54.	0.6	69
46	Pathological complete response in patients with esophageal cancer after the trimodality approach: The association with baseline variables and survival—The University of Texas MD Anderson Cancer Center experience. Cancer, 2017, 123, 4106-4113.	4.1	118
47	Proton Beam Radiotherapy and Concurrent Chemotherapy for Unresectable Stage III Non–Small Cell Lung Cancer. JAMA Oncology, 2017, 3, e172032.	7.1	119
48	Long-term survival and toxicity outcomes of intensity modulated radiation therapy for the treatment of esophageal cancer: A large single-institutional cohort study. Advances in Radiation Oncology, 2017, 2, 316-324.	1.2	14
49	Comparative Outcomes After Definitive Chemoradiotherapy Using Proton Beam Therapy Versus Intensity Modulated Radiation Therapy for Esophageal Cancer: A Retrospective, Single-Institutional Analysis. International Journal of Radiation Oncology Biology Physics, 2017, 99, 667-676.	0.8	79
50	Incidence of Second Malignancy after Successful Treatment of Limited-Stage Small–Cell Lung Cancer and Its Effects on Survival. Journal of Thoracic Oncology, 2017, 12, 1696-1703.	1.1	9
51	The impact of histology on recurrence patterns in esophageal cancer treated with definitive chemoradiotherapy. Radiotherapy and Oncology, 2017, 124, 318-324.	0.6	47
52	Suppression of Type I IFN Signaling in Tumors Mediates Resistance to Anti-PD-1 Treatment That Can Be Overcome by Radiotherapy. Cancer Research, 2017, 77, 839-850.	0.9	195
53	Ipilimumab with Stereotactic Ablative Radiation Therapy: Phase I Results and Immunologic Correlates from Peripheral T Cells. Clinical Cancer Research, 2017, 23, 1388-1396.	7.0	261
54	Stereotactic ablative radiotherapy for adrenal gland metastases: Factors influencing outcomes, patterns of failure, and dosimetric thresholds for toxicity. Practical Radiation Oncology, 2017, 7, e195-e203.	2.1	44

#	Article	IF	CITATIONS
55	MiRNA-Related Genetic Variations Associated with Radiotherapy-Induced Toxicities in Patients with Locally Advanced Non–Small Cell Lung Cancer. PLoS ONE, 2016, 11, e0150467.	2.5	7
56	Radiation modality use and cardiopulmonary mortality risk in elderly patients with esophageal cancer. Cancer, 2016, 122, 917-928.	4.1	75
57	Motionâ€robust intensityâ€modulated proton therapy for distal esophageal cancer. Medical Physics, 2016, 43, 1111-1118.	3.0	63
58	Prospective Study of Patient-Reported Symptom Burden in Patients With Non–Small-Cell Lung Cancer Undergoing Proton or Photon Chemoradiation Therapy. Journal of Pain and Symptom Management, 2016, 51, 832-838.	1.2	27
59	Prognosis and predictors of site of first metastasis after definitive radiation therapy for non-small cell lung cancer. Acta Oncológica, 2016, 55, 1022-1028.	1.8	22
60	Bayesian regression analyses of radiation modality effects on pericardial and pleural effusion and survival in esophageal cancer. Radiotherapy and Oncology, 2016, 121, 70-74.	0.6	12
61	Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncology, The, 2016, 17, 1672-1682.	10.7	865
62	Hsp90 Inhibitor Ganetespib Sensitizes Non–Small Cell Lung Cancer to Radiation but Has Variable Effects with Chemoradiation. Clinical Cancer Research, 2016, 22, 5876-5886.	7.0	25
63	Single Nucleotide Polymorphisms in CBLB, aÂRegulator of T-Cell Response, Predict Radiation Pneumonitis and Outcomes After Definitive Radiotherapy for Non–Small-Cell Lung Cancer. Clinical Lung Cancer, 2016, 17, 253-262.e5.	2.6	16
64	Quantitative assessment of target delineation variability for thymic cancers: agreement evaluation of a prospective segmentation challenge. Journal of Radiation Oncology, 2016, 5, 55-61.	0.7	4
65	PDL1 Regulation by p53 via miR-34. Journal of the National Cancer Institute, 2016, 108, .	6.3	475
66	Phase I trial combining ipilimumab + high dose stereotactic radiation: Results and serum immune correlates Journal of Clinical Oncology, 2016, 34, 3022-3022.	1.6	1
67	Bayesian randomized trial comparing intensity modulated radiation therapy versus passively scattered proton therapy for locally advanced non-small cell lung cancer Journal of Clinical Oncology, 2016, 34, 8500-8500.	1.6	26
68	Local consolidative therapy (LCT) to improve progression-free survival (PFS) in patients with oligometastatic non-small cell lung cancer (NSCLC) who receive induction systemic therapy (IST): Results of a multi-institutional phase II randomized study Journal of Clinical Oncology, 2016, 34, 9004-9004.	1.6	4
69	Analysis of PD-L1 and RAD50 in circulating cells recovered from lung cancer patients before and after induction of radiotherapy Journal of Clinical Oncology, 2016, 34, e20537-e20537.	1.6	2
70	Influence of induction chemotherapy (IC) in trimodality-eligible esophageal cancer patients: Secondary analysis of a randomized trial Journal of Clinical Oncology, 2016, 34, 4027-4027.	1.6	1
71	Normal-lung uptake of fluorodeoxyglucose, patient-reported symptoms, and clinician-rated radiation pneumonitis in patients with non-small cell lung cancer treated with chemoradiation Journal of Clinical Oncology, 2016, 34, e20028-e20028.	1.6	0
72	Adding Erlotinib to Chemoradiation Improves Overall Survival but Not Progression-Free Survival in Stage III Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2015, 92, 317-324.	0.8	59

#	Article	IF	CITATIONS
73	In Vivo Delivery of miR-34a Sensitizes Lung Tumors to Radiation Through RAD51 Regulation. Molecular Therapy - Nucleic Acids, 2015, 4, e270.	5.1	63
74	Use of Simultaneous Radiation Boost Achieves High Control Rates in Patients With Non–Small-Cell Lung Cancer Who Are Not Candidates for Surgery or Conventional Chemoradiation. Clinical Lung Cancer, 2015, 16, 156-163.	2.6	31
75	Long-term outcomes after proton therapy, with concurrent chemotherapy, for stage Il–III inoperable non-small cell lung cancer. Radiotherapy and Oncology, 2015, 115, 367-372.	0.6	82
76	Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncology, The, 2015, 16, 630-637.	10.7	1,220
77	Phase 2 trial of dasatinib in target-selected patients with recurrent glioblastoma (RTOG 0627). Neuro-Oncology, 2015, 17, 992-998.	1.2	116
78	NCI 9448: Phase I study of trametinib in combination with chemoradiation for KRAS-mutant non-small cell lung cancer Journal of Clinical Oncology, 2015, 33, TPS7585-TPS7585.	1.6	4
79	Analysis of patients with esophageal cancer following trimodality therapy: Pathological complete remission (PathCR) versus non-PathCR Journal of Clinical Oncology, 2015, 33, 4041-4041.	1.6	0
80	Longitudinal study of pneumonitis and esophagitis-related symptoms in patients receiving concurrent chemoradiation for NSCLC Journal of Clinical Oncology, 2015, 33, 9611-9611.	1.6	0
81	The Potential Role of Respiratory Motion Management and Image Guidance in the Reduction of Severe Toxicities Following Stereotactic Ablative Radiation Therapy for Patients with Centrally Located Early Stage Non-Small Cell Lung Cancer or Lung Metastases. Frontiers in Oncology, 2014, 4, 151.	2.8	17
82	Serum inflammatory miRNAs predict radiation esophagitis in patients receiving definitive radiochemotherapy for non-small cell lung cancer. Radiotherapy and Oncology, 2014, 113, 379-384.	0.6	26
83	Therapeutic Delivery of miR-200c Enhances Radiosensitivity in Lung Cancer. Molecular Therapy, 2014, 22, 1494-1503.	8.2	172
84	Radiotherapy for Thymic Carcinoma: Adjuvant, Inductive, and Definitive. Frontiers in Oncology, 2014, 3, 330.	2.8	32
85	Can Patient Comorbidities Be Included in Clinical Performance Measures for Radiation Oncology?. Journal of Oncology Practice, 2014, 10, e175-e181.	2.5	4
86	Association Between White Blood Cell Count Following Radiation Therapy With Radiation Pneumonitis in Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2014, 88, 319-325.	0.8	16
87	Evaluation and mitigation of the interplay effects of intensity modulated proton therapy for lung cancer in a clinical setting. Practical Radiation Oncology, 2014, 4, e259-e268.	2.1	56
88	Definitive Reirradiation for Locoregionally Recurrent Non-Small Cell Lung Cancer With Proton Beam Therapy or Intensity Modulated Radiation Therapy: Predictors of High-Grade Toxicity and Survival Outcomes. International Journal of Radiation Oncology Biology Physics, 2014, 90, 819-827.	0.8	71
89	EGFR expression and survival in patients given cetuximab and chemoradiation for stage III non-small cell lung cancer: A secondary analysis of RTOG 0324. Radiotherapy and Oncology, 2014, 112, 30-36.	0.6	7
90	Lymphopenia Association With Gross Tumor Volume and Lung V5 and Its Effects on Non-Small Cell Lung Cancer Patient Outcomes. International Journal of Radiation Oncology Biology Physics, 2014, 89, 1084-1091.	0.8	285

#	Article	IF	CITATIONS
91	On the interplay effects with proton scanning beams in stage III lung cancer. Medical Physics, 2014, 41, 021721.	3.0	87
92	Stereotactic Ablative Radiation Therapy for Centrally Located Early Stage or Isolated Parenchymal Recurrences of Non-Small Cell Lung Cancer: How to Fly in a "No Fly Zoneâ€: International Journal of Radiation Oncology Biology Physics, 2014, 88, 1120-1128.	0.8	225
93	Acute phase response before treatment predicts radiation esophagitis in non-small cell lung cancer. Radiotherapy and Oncology, 2014, 110, 493-498.	0.6	11
94	Genetic variants of the LIN28B gene predict severe radiation pneumonitis in patients with non-small cell lung cancer treated with definitive radiation therapy. European Journal of Cancer, 2014, 50, 1706-1716.	2.8	38
95	Why Target the Globe?: 4-year report (2009-2013) of the Association of Residents in Radiation Oncology Global Health Initiative. International Journal of Radiation Oncology Biology Physics, 2014, 89, 485-491.	0.8	24
96	Patterns of practice in radiation therapy for non-small cell lung cancer among members of the American Society for Radiation Oncology. Practical Radiation Oncology, 2014, 4, e133-e141.	2.1	16
97	Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer. Medical Dosimetry, 2013, 38, 442-447.	0.9	19
98	Kie Kian Ang, M.D. Ph.D., 1950–2013. Radiation Research, 2013, 180, 433-435.	1.5	0
99	Comparison of 2 Common Radiation Therapy Techniques for Definitive Treatment of Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 87, 139-147.	0.8	36
100	Penetration of Recommended Procedures for Lung Cancer Staging and Management in the United States Over 10 Years: A Quality Research in Radiation Oncology Survey. International Journal of Radiation Oncology Biology Physics, 2013, 85, 1082-1089.	0.8	51
101	What Would Be the Most Appropriateα/βRatio in the Setting of Stereotactic Body Radiation Therapy for Early Stage Non-Small Cell Lung Cancer. BioMed Research International, 2013, 2013, 1-8.	1.9	23
102	Phase II Trial of Erlotinib Plus Concurrent Whole-Brain Radiation Therapy for Patients With Brain Metastases From Non–Small-Cell Lung Cancer. Journal of Clinical Oncology, 2013, 31, 895-902.	1.6	366
103	A randomized phase III comparison of standard-dose (60 Gy) versus high-dose (74 Gy) conformal chemoradiotherapy with or without cetuximab for stage III non-small cell lung cancer: Results on radiation dose in RTOG 0617 Journal of Clinical Oncology, 2013, 31, 7501-7501.	1.6	78
104	Non–Small Cell Lung Cancer. , 2013, , 45-62.		0
105	Capsular contracture of subcutaneous breast implant following hypofractionated stereotactic body radiotherapy for early stage lung cancer. Journal of Radiosurgery and SBRT, 2013, 2, 165-170.	0.2	0
106	Postoperative Radiation Therapy for Non-Small Cell Lung Cancer and Thymic Malignancies. Cancers, 2012, 4, 307-322.	3.7	18
107	Higher Biologically Effective Dose of Radiotherapy Is Associated With Improved Outcomes for Locally Advanced Non–Small Cell Lung Carcinoma Treated With Chemoradiation: An Analysis of the Radiation Therapy Oncology Group. International Journal of Radiation Oncology Biology Physics, 2012, 82, 425-434.	0.8	254
108	Esophageal Cancer Dose Escalation Using a Simultaneous Integrated Boost Technique. International Journal of Radiation Oncology Biology Physics, 2012, 82, 468-474.	0.8	86

#	Article	IF	CITATIONS
109	Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 82, e91-e97.	0.8	62
110	Phase II Study of Accelerated High-Dose Radiotherapy With Concurrent Chemotherapy for Patients With Limited Small-Cell Lung Cancer: Radiation Therapy Oncology Group Protocol 0239. International Journal of Radiation Oncology Biology Physics, 2012, 83, e531-e536.	0.8	44
111	Propensity Score-based Comparison of Long-term Outcomes With 3-Dimensional Conformal Radiotherapy vs Intensity-Modulated Radiotherapy for Esophageal Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 84, 1078-1085.	0.8	230
112	Improving cardiac dosimetry: Alternative beam arrangements for intensity modulated radiation therapy planning in patients with carcinoma of the distal esophagus. Practical Radiation Oncology, 2012, 2, 41-45.	2.1	11
113	A prospective phase 2 study of surgery followed by chemotherapy and radiation for superior sulcus tumors. Cancer, 2012, 118, 444-451.	4.1	23
114	Intensity-Modulated Proton Therapy Further Reduces Normal Tissue Exposure During Definitive Therapy for Locally Advanced Distal Esophageal Tumors: A Dosimetric Study. International Journal of Radiation Oncology Biology Physics, 2011, 81, 1336-1342.	0.8	122
115	Phase I study of celecoxib with concurrent irinotecan, cisplatin, and radiation therapy for patients with unresectable locally advanced non-small cell lung cancer. Frontiers in Oncology, 2011, 1, 52.	2.8	11
116	Radioprotectors and Chemoprotectors in the Management of Lung Cancer. Medical Radiology, 2011, , 223-245.	0.1	0
117	Update: Modern Approaches to the Treatment of Localized Esophageal Cancer. Current Oncology Reports, 2011, 13, 157-167.	4.0	9
118	Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer. Cancer, 2011, 117, 3004-3013.	4.1	117
119	Primary Analysis of a Phase II Randomized Trial Radiation Therapy Oncology Group (RTOG) 0212: Impact of Different Total Doses and Schedules of Prophylactic Cranial Irradiation on Chronic Neurotoxicity and Quality of Life for Patients With Limited-Disease Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2011, 81, 77-84.	0.8	232
120	Sequential vs Concurrent Chemoradiation for Stage III Non-Small Cell Lung Cancer: Randomized Phase III Trial RTOG 9410. Journal of the National Cancer Institute, 2011, 103, 1452-1460.	6.3	1,043
121	Phase II Study of Cetuximab in Combination With Chemoradiation in Patients With Stage IIIA/B Non–Small-Cell Lung Cancer: RTOG 0324. Journal of Clinical Oncology, 2011, 29, 2312-2318.	1.6	161
122	Treatment of Brain Metastasis from Lung Cancer. Cancers, 2010, 2, 2100-2137.	3.7	61
123	Influence of Age on Choice of Therapy and Surgical Outcomes in Patients with Nonsmall Cell Lung Cancer. American Surgeon, 2009, 75, 598-604.	0.8	7
124	Impact of tumor length on long-term survival of pT1 esophageal adenocarcinoma. Journal of Thoracic and Cardiovascular Surgery, 2009, 138, 831-836.	0.8	56
125	Is sex associated with the outcome of patients treated with radiation for nonsmall cell lung cancer?. Cancer, 2009, 115, 3233-3242.	4.1	19
126	Patterns of Care and Locoregional Treatment Outcomes in Older Esophageal Cancer Patients: The SEER-Medicare Cohort. International Journal of Radiation Oncology Biology Physics, 2009, 74, 482-489.	0.8	51

#	Article	IF	CITATIONS
127	Exclusion of elective nodal irradiation is associated with minimal elective nodal failure in non-small cell lung cancer. Radiation Oncology, 2009, 4, 5.	2.7	59
128	Dose Escalation of Gemcitabine Is Possible With Concurrent Chest Three-Dimensional Rather Than Two-Dimensional Radiotherapy: A Phase I Trial in Patients With Stage III Non–Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 73, 119-127.	0.8	17
129	Consequences of Anatomic Changes and Respiratory Motion on Radiation Dose Distributions in Conformal Radiotherapy for Locally Advanced Non–Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 73, 94-102.	0.8	47
130	Neurocognitive function in patients with small cell lung cancer. Cancer, 2008, 112, 589-595.	4.1	131
131	Clinically Meaningful Differences in Patient-Reported Outcomes With Amifostine in Combination With Chemoradiation for Locally Advanced Non–Small-Cell Lung Cancer: An Analysis of RTOG 9801. International Journal of Radiation Oncology Biology Physics, 2008, 72, 1378-1384.	0.8	49
132	Effects of Interfractional Motion and Anatomic Changes on Proton Therapy Dose Distribution in Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 72, 1385-1395.	0.8	81
133	Imaging of Non–Small Cell Lung Cancer of the Superior Sulcus. Radiographics, 2008, 28, 551-560.	3.3	41
134	Image–Guided Radiation Therapy for Non–small Cell Lung Cancer. Journal of Thoracic Oncology, 2008, 3, 177-186.	1.1	101
135	Effect of Amifostine on Response Rates in Locally Advanced Non–Small-Cell Lung Cancer Patients Treated on Randomized Controlled Trials: A Meta-Analysis. International Journal of Radiation Oncology Biology Physics, 2007, 68, 111-118.	0.8	35
136	Initial Evaluation of Treatment-Related Pneumonitis in Advanced-Stage Non–Small-Cell Lung Cancer Patients Treated With Concurrent Chemotherapy and Intensity-Modulated Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2007, 68, 94-102.	0.8	269
137	Assessing Respiration-Induced Tumor Motion and Internal Target Volume Using Four-Dimensional Computed Tomography for Radiotherapy of Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2007, 68, 531-540.	0.8	306
138	Comparison of Outcomes for Patients With Unresectable, Locally Advanced Non–Small-Cell Lung Cancer Treated With Induction Chemotherapy Followed By Concurrent Chemoradiation vs. Concurrent Chemoradiation Alone. International Journal of Radiation Oncology Biology Physics, 2007, 68, 779-785.	0.8	19
139	Evaluation of conventional radiotherapy vs. conformal radiotherapy in the treatment of non-small-cell lung cancer after surgical resection. Chinese-German Journal of Clinical Oncology, 2007, 6, 514-518.	0.1	Ο
140	Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non–small-cell lung cancer. International Journal of Radiation Oncology Biology Physics, 2006, 65, 1087-1096.	0.8	290
141	Nonsmall cell lung cancer presenting with synchronous solitary brain metastasis. Cancer, 2006, 106, 1998-2004.	4.1	136
142	Longitudinal Study of the Relationship Between Chemoradiation Therapy for Non–Small-Cell Lung Cancer and Patient Symptoms. Journal of Clinical Oncology, 2006, 24, 4485-4491.	1.6	108
143	Decision Analysis for Prophylactic Cranial Irradiation for Patients With Small-Cell Lung Cancer. Journal of Clinical Oncology, 2006, 24, 3597-3603.	1.6	75
144	Phase I study of thoracic radiation dose escalation with concurrent chemotherapy for patients with limited small-cell lung cancer: Report of Radiation Therapy Oncology Group (RTOG) protocol 97–12. International Journal of Radiation Oncology Biology Physics, 2005, 62, 342-350.	0.8	93

#	Article	IF	CITATIONS
145	Mutagen Sensitivity May Predict Lung Protection by Amifostine for Patients With Locally Advanced Non-Small Cell Lung Cancer Treated by Chemoradiotherapy. Seminars in Oncology, 2005, 32, 92-98.	2.2	1
146	Intensity modulated radiation therapy and proton radiotherapy for non-small cell lung cancer. Current Oncology Reports, 2005, 7, 255-259.	4.0	33
147	Radioprotectors and Chemoprotectors in the Management of Lung Cancer. , 2005, , 123-134.		0
148	What Should the Optimal Timing Be for Amifostine Administration Relative to Radiation and Chemotherapy?. Journal of Clinical Oncology, 2005, 23, 7232-7233.	1.6	4
149	Randomized Trial of Amifostine in Locally Advanced Non–Small-Cell Lung Cancer Patients Receiving Chemotherapy and Hyperfractionated Radiation: Radiation Therapy Oncology Group Trial 98-01. Journal of Clinical Oncology, 2005, 23, 2145-2154.	1.6	215
150	Patterns of care survey (PCS) in lung cancer: how well does current U.S. practice with chemotherapy in the non-metastatic setting follow the literature?. Lung Cancer, 2005, 48, 93-102.	2.0	33
151	Dosimetric benefits of respiratory gating: a preliminary study. Journal of Applied Clinical Medical Physics, 2004, 5, 1-9.	1.9	15
152	Improvement strategies for molecular targeting: cyclooxygenase-2 inhibitors as radiosensitizers for non-small cell lung cancer. Seminars in Oncology, 2004, 31, 47-53.	2.2	26
153	Dose and volume reduction for normal lung using intensity-modulated radiotherapy for advanced-stage non–small-cell lung cancer. International Journal of Radiation Oncology Biology Physics, 2004, 58, 1258-1267.	0.8	249
154	Effects of amifostine on acute toxicity from concurrent chemotherapy and radiotherapy for inoperable non–small-cell lung cancer: report of a randomized comparative trial. International Journal of Radiation Oncology Biology Physics, 2004, 58, 1369-1377.	0.8	162
155	Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI: Part II—margin reduction of internal target volume. International Journal of Radiation Oncology Biology Physics, 2004, 60, 1473-1483.	0.8	90
156	Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI: Part l—correlating internal lung motion with skin fiducial motion. International Journal of Radiation Oncology Biology Physics, 2004, 60, 1459-1472.	0.8	196
157	Combined treatment for limited small cell lung cancer. Seminars in Oncology, 2003, 30, 56-70.	2.2	10
158	Nonsurgical Treatment of Early-Stage and Locally Advanced Non-Small Cell Lung Cancer. , 2003, , 142-157.		0
159	Target definition and contouring in carcinoma of the lung and esophagus. Rays, 2003, 28, 225-36.	0.2	7
160	INT 0123 (Radiation Therapy Oncology Group 94-05) Phase III Trial of Combined-Modality Therapy for Esophageal Cancer: High-Dose Versus Standard-Dose Radiation Therapy. Journal of Clinical Oncology, 2002, 20, 1167-1174.	1.6	981
161	Twice daily irradiation increases locoregional control in patients with medically inoperable or surgically unresectable stage II-IIIB non-small-cell lung cancer. International Journal of Radiation Oncology Biology Physics, 2002, 53, 558-565.	0.8	13
162	A three-step strategy of induction chemotherapy then chemoradiation followed by surgery in patients with potentially resectable carcinoma of the esophagus or gastroesophageal junction. Cancer, 2001, 92, 279-286.	4.1	119

#	Article	IF	CITATIONS
163	Oncodiagnosis Panel: 1999. Radiographics, 2001, 21, 1573-1596.	3.3	5
164	The management of superior sulcus tumors. , 2000, 18, 152-164.		24
165	Outcome predictors for 143 patients with superior sulcus tumors treated by multidisciplinary approach at the University of Texas M. D. Anderson Cancer Center. International Journal of Radiation Oncology Biology Physics, 2000, 48, 347-354.	0.8	68
166	Gastroesophageal junction adenocarcinoma. Current Treatment Options in Oncology, 2000, 1, 387-398.	3.0	17
167	Final Results of Phase III Trial in Regionally Advanced Unresectable Non-Small Cell Lung Cancer. Chest, 2000, 117, 358-364.	0.8	594
168	Addition of chemotherapy to radiation therapy alters failure patterns by cell type within non-small cell carcinoma of lung (NSCCL): analysis of radiation therapy oncology group (RTOG) trials. International Journal of Radiation Oncology Biology Physics, 1999, 43, 505-509.	0.8	105
169	Twice-Daily Compared with Once-Daily Thoracic Radiotherapy in Limited Small-Cell Lung Cancer Treated Concurrently with Cisplatin and Etoposide. New England Journal of Medicine, 1999, 340, 265-271.	27.0	1,376
170	Combined chest wall resection with vertebrectomy and spinal reconstruction for the treatment of Pancoast tumors. Journal of Neurosurgery: Spine, 1999, 91, 74-80.	1.7	34
171	Failure patterns by prognostic group determined by recursive partitioning analysis (RPA) of 1547 patients on four radiation therapy oncology group (RTOG) studies in inoperable nonsmall-cell lung cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 1998, 42, 263-267.	0.8	68
172	A pilot trial of hyperfractionated thoracic radiation therapy with concurrent cisplatin and oral etoposide for locally advanced inoperable non–small-cell lung cancer: a 5-year follow-up report. International Journal of Radiation Oncology Biology Physics, 1998, 42, 479-486.	0.8	28
173	Randomized study of chemotherapy/radiation therapy combinations for favorable patients with locally advanced inoperable nonsmall cell lung cancer: Radiation therapy oncology group (RTOG) 92-04. International Journal of Radiation Oncology Biology Physics, 1997, 38, 149-155.	0.8	95
174	Impact of Adding Concurrent Chemotherapy to Hyperfractionated Radiotherapy for Locally Advanced Non-Small Cell Lung Cancer (NSCLC):. American Journal of Clinical Oncology: Cancer Clinical Trials, 1997, 20, 435-440.	1.3	33
175	Altered fractionation and extended-field irradiation of carcinoma of the cervix. Cancer, 1995, 76, 2152-2158.	4.1	5
176	Evaluation of cognitive function in patients with limited small cell lung cancer prior to and shortly following prophylactic cranial irradiation. International Journal of Radiation Oncology Biology Physics, 1995, 33, 179-182.	0.8	199
177	Cognitive deficits in patients with small cell lung cancer before and after chemotherapy. Lung Cancer, 1995, 12, 231-235.	2.0	136
178	Protection by WR-2721 against radiation plus cis-diamminedichloroplatinum II caused injury to colonic epithelium in mice. International Journal of Radiation Oncology Biology Physics, 1994, 28, 899-903.	0.8	12
179	Superior sulcus tumors: Treatment selection and results for 85 patients without metastasis (Mo) at presentation. International Journal of Radiation Oncology Biology Physics, 1990, 19, 31-36.	0.8	88
180	Brain metastasis in patients with superior sulcus tumors. Cancer, 1987, 59, 1649-1653.	4.1	40

#	Article	IF	CITATIONS
181	Frequency of brain metastasis in adenocarcinoma and large cell carcinoma of the lung: Correlation with survival. International Journal of Radiation Oncology Biology Physics, 1983, 9, 1467-1470.	0.8	77
182	Superior sulcus tumors: Results of irradiation of 36 patients. Cancer, 1981, 48, 1563-1568.	4.1	91