Richard J Field

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7221042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Science, serendipity, coincidence, and the Oregonator at the University of Oregon, 1969–1974. Chaos, 2022, 32, .	1.0	2
2	Quint points lattice in a driven Belousov–Zhabotinsky reaction model. Chaos, 2021, 31, 053124.	1.0	18
3	Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mÄnuka honey: Part IV – Formation of HMF. Food Chemistry, 2017, 232, 648-655.	4.2	16
4	Oregonator Scaling Motivated by the Showalter–Noyes Limit. Journal of Physical Chemistry A, 2016, 120, 8006-8010.	1.1	5
5	Chaos in the Belousov-Zhabotinsky reaction. , 2016, , 37-82.		2
6	Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mÄnuka honey: Part I – Honey systems. Food Chemistry, 2016, 202, 484-491.	4.2	40
7	Kinetics of the conversion of dihydroxyacetone to methylglyoxal in New Zealand mÄnuka honey: Part II – Model systems. Food Chemistry, 2016, 202, 492-499.	4.2	17
8	Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mÄnuka honey: Part III – A model to simulate the conversion. Food Chemistry, 2016, 202, 500-506.	4.2	8
9	Chaos in the Belousov–Zhabotinsky reaction. Modern Physics Letters B, 2015, 29, 1530015.	1.0	18
10	Quantification of nitropropanoyl glucosides in karaka nuts before and after treatment. Food Chemistry, 2015, 175, 543-548.	4.2	6
11	Social-support moderated stress: a nonlinear dynamical model and the stress-buffering hypothesis. Nonlinear Dynamics, Psychology, and Life Sciences, 2011, 15, 53-85.	0.2	14
12	An NMR Study of the Equilibration of <scp>d</scp> â€Glucaric Acid with Lactone Forms in Aqueous Acid Solutions. Journal of Carbohydrate Chemistry, 2007, 26, 455-467.	0.4	22
13	Oxidation State of BZ Reaction Mixtures. Journal of Physical Chemistry A, 2006, 110, 5-7.	1.1	20
14	HPLC analysis of complete BZ systems. Evolution of the chemical composition in cerium and ferroin catalysed batch oscillators: experiments and model calculations. Faraday Discussions, 2002, 120, 21-38.	1.6	65
15	Dynamic instability in tropospheric photochemistry: An excitability threshold. Geophysical Research Letters, 2001, 28, 4437-4440.	1.5	5
16	Steady State Instability and Oscillation in Simplified Models of Tropospheric Chemistry. Journal of Physical Chemistry A, 2001, 105, 11212-11219.	1.1	6
17	Title is missing!. Journal of Atmospheric Chemistry, 2001, 39, 65-93.	1.4	10
18	Kinetic Evidence for Accumulation of Stoichiometrically Significant Amounts of H2I2O3 during the Reaction of I- with IO3 Journal of Physical Chemistry A, 2000, 104, 5269-5274.	1.1	29

RICHARD J FIELD

#	Article	IF	CITATIONS
19	An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (Epstein, I.) Tj ETQq1	1 0.78431 1.1	4 ₄ gBT /Ove
20	Kinetics of Formation of Di-d-fructose Dianhydrides during Thermal Treatment of Inulin. Journal of Agricultural and Food Chemistry, 2000, 48, 1823-1837.	2.4	46
21	Bromination Reactions Important in the Mechanism of the Belousovâ^'Zhabotinsky System. Journal of Physical Chemistry A, 1999, 103, 1038-1043.	1.1	45
22	MODELING AND INTERPRETATION OF CHAOS IN THE BELOUSOV-ZHABOTINSKY REACTION. , 1993, , 47-85.		3
23	A three-variable model of deterministic chaos in the Belousov–Zhabotinsky reaction. Nature, 1992, 355, 808-810.	13.7	118
24	MODELING OF AN OBSERVED TURING STRUCTURE IN THE \${m CLO}_2^{m I}^-\$–MALONIC ACID SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1991, 01, 929-931.	0.7	3
25	Comment on: â€~â€~Chaos in the Showalter–Noyes–Bar–Eli model of the Belousov–Zhabotinskii reactior Journal of Chemical Physics, 1990, 93, 2159-2160.	i'' 1.2	· о
26	Aperiodicity resulting from twoâ€cycle coupling in the Belousov–Zhabotinskii reaction. III. Analysis of a model of the effect of spatial inhomogeneities at the input ports of a continuousâ€flow, stirred tank reactor. Journal of Chemical Physics, 1989, 91, 6131-6141.	1.2	26
27	On the oxybromine chemistry rate constants with cerium ions in the Field-Koeroes-Noyes mechanism of the Belousov-Zhabotinskii reaction: the equilibrium HBrO2 + BrO3- + H+ .dblharw. 2BrO.ovrhdot.2 + H2O. The Journal of Physical Chemistry, 1986, 90, 5400-5407.	2.9	174
28	Observation of a peculiar phenomenon in the cerium-ion-catalyzed Belousov-Zhabotinskii oscillator with acetylacetone in CSTR mode. Reaction Kinetics and Catalysis Letters, 1985, 28, 233-238.	0.6	0
29	A new chemical oscillator containing neither metal nor oxyhalogen ions. Nature, 1984, 307, 720-721.	13.7	44
30	Oxidation of formic acid by bromine in aqueous, strongly acid media. International Journal of Chemical Kinetics, 1980, 12, 393-402.	1.0	3
31	Travelling Waves of Chemical Activity in the Zaikin-Zhabotinskii-Winfree Reagent. Journal of Chemical Education, 1979, 56, 754.	1.1	27
32	Oscillations in chemical systems. V. Quantitative explanation of band migration in the Belousov-Zhabotinskii reaction. Journal of the American Chemical Society, 1974, 96, 2001-2006.	6.6	172
33	Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. Journal of Chemical Physics, 1974, 60, 1877-1884.	1.2	1,170
34	Das Experiment: Eine oszillierende Reaktion. Chemie in Unserer Zeit, 1973, 7, 171-176.	0.1	14
35	Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. Journal of the American Chemical Society, 1972, 94, 8649-8664.	6.6	1,379
36	Oscillations in chemical systems. I. Detailed mechanism in a system showing temporal oscillations. Journal of the American Chemical Society, 1972, 94, 1394-1395.	6.6	163

RICHARD J FIELD

#	Article	IF	CITATIONS
37	Explanation of Spatial Band Propagation in the Belousov Reaction. Nature, 1972, 237, 390-392.	13.7	95
38	Mechanism of reaction of bromine(V) with weak one-electron reducing agents. Journal of the American Chemical Society, 1971, 93, 7315-7316.	6.6	83