
Richard J Field

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7221042/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system. Journal of the American Chemical Society, 1972, 94, 8649-8664.	6.6	1,379
2	Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. Journal of Chemical Physics, 1974, 60, 1877-1884.	1.2	1,170
3	On the oxybromine chemistry rate constants with cerium ions in the Field-Koeroes-Noyes mechanism of the Belousov-Zhabotinskii reaction: the equilibrium HBrO2 + BrO3- + H+ .dblharw. 2BrO.ovrhdot.2 + H2O. The Journal of Physical Chemistry, 1986, 90, 5400-5407.	2.9	174
4	Oscillations in chemical systems. V. Quantitative explanation of band migration in the Belousov-Zhabotinskii reaction. Journal of the American Chemical Society, 1974, 96, 2001-2006.	6.6	172
5	Oscillations in chemical systems. I. Detailed mechanism in a system showing temporal oscillations. Journal of the American Chemical Society, 1972, 94, 1394-1395.	6.6	163
6	A three-variable model of deterministic chaos in the Belousov–Zhabotinsky reaction. Nature, 1992, 355, 808-810.	13.7	118
7	Explanation of Spatial Band Propagation in the Belousov Reaction. Nature, 1972, 237, 390-392.	13.7	95
8	Mechanism of reaction of bromine(V) with weak one-electron reducing agents. Journal of the American Chemical Society, 1971, 93, 7315-7316.	6.6	83
9	HPLC analysis of complete BZ systems. Evolution of the chemical composition in cerium and ferroin catalysed batch oscillators: experiments and model calculations. Faraday Discussions, 2002, 120, 21-38.	1.6	65
10	Kinetics of Formation of Di-d-fructose Dianhydrides during Thermal Treatment of Inulin. Journal of Agricultural and Food Chemistry, 2000, 48, 1823-1837.	2.4	46
11	Bromination Reactions Important in the Mechanism of the Belousovâ~'Zhabotinsky System. Journal of Physical Chemistry A, 1999, 103, 1038-1043.	1.1	45
12	A new chemical oscillator containing neither metal nor oxyhalogen ions. Nature, 1984, 307, 720-721.	13.7	44
13	Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mÄnuka honey: Part I – Honey systems. Food Chemistry, 2016, 202, 484-491.	4.2	40
14	Kinetic Evidence for Accumulation of Stoichiometrically Significant Amounts of H2I2O3 during the Reaction of I- with IO3 Journal of Physical Chemistry A, 2000, 104, 5269-5274.	1.1	29
15	Travelling Waves of Chemical Activity in the Zaikin-Zhabotinskii-Winfree Reagent. Journal of Chemical Education, 1979, 56, 754.	1.1	27
16	Aperiodicity resulting from twoâ€cycle coupling in the Belousov–Zhabotinskii reaction. III. Analysis of a model of the effect of spatial inhomogeneities at the input ports of a continuousâ€flow, stirred tank reactor. Journal of Chemical Physics, 1989, 91, 6131-6141.	1.2	26
17	An NMR Study of the Equilibration of <scp>d</scp> â€Glucaric Acid with Lactone Forms in Aqueous Acid Solutions. Journal of Carbohydrate Chemistry, 2007, 26, 455-467.	0.4	22
18	Oxidation State of BZ Reaction Mixtures. Journal of Physical Chemistry A, 2006, 110, 5-7.	1.1	20

RICHARD J FIELD

#	Article	IF	CITATIONS
19	Chaos in the Belousov–Zhabotinsky reaction. Modern Physics Letters B, 2015, 29, 1530015.	1.0	18
20	Quint points lattice in a driven Belousov–Zhabotinsky reaction model. Chaos, 2021, 31, 053124.	1.0	18
21	Kinetics of the conversion of dihydroxyacetone to methylglyoxal in New Zealand mÄnuka honey: Part II – Model systems. Food Chemistry, 2016, 202, 492-499.	4.2	17
22	Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mÄnuka honey: Part IV – Formation of HMF. Food Chemistry, 2017, 232, 648-655.	4.2	16
23	Das Experiment: Eine oszillierende Reaktion. Chemie in Unserer Zeit, 1973, 7, 171-176.	0.1	14
24	Social-support moderated stress: a nonlinear dynamical model and the stress-buffering hypothesis. Nonlinear Dynamics, Psychology, and Life Sciences, 2011, 15, 53-85.	0.2	14
25	Title is missing!. Journal of Atmospheric Chemistry, 2001, 39, 65-93.	1.4	10
26	Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mÄnuka honey: Part III – A model to simulate the conversion. Food Chemistry, 2016, 202, 500-506.	4.2	8
27	Steady State Instability and Oscillation in Simplified Models of Tropospheric Chemistry. Journal of Physical Chemistry A, 2001, 105, 11212-11219.	1.1	6
28	Quantification of nitropropanoyl glucosides in karaka nuts before and after treatment. Food Chemistry, 2015, 175, 543-548.	4.2	6
29	Dynamic instability in tropospheric photochemistry: An excitability threshold. Geophysical Research Letters, 2001, 28, 4437-4440.	1.5	5
30	Oregonator Scaling Motivated by the Showalter–Noyes Limit. Journal of Physical Chemistry A, 2016, 120, 8006-8010.	1.1	5
31	An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (Epstein, I.) Tj ETQq1	1 0.78431 1.1	4 rgBT /Ove
32	Oxidation of formic acid by bromine in aqueous, strongly acid media. International Journal of Chemical Kinetics, 1980, 12, 393-402.	1.0	3
33	MODELING OF AN OBSERVED TURING STRUCTURE IN THE \${m CLO}_2^{m I}^-\$–MALONIC ACID SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1991, 01, 929-931.	0.7	3
34	MODELING AND INTERPRETATION OF CHAOS IN THE BELOUSOV-ZHABOTINSKY REACTION. , 1993, , 47-85.		3
35	Chaos in the Belousov-Zhabotinsky reaction. , 2016, , 37-82.		2
36	Science, serendipity, coincidence, and the Oregonator at the University of Oregon, 1969–1974. Chaos, 2022, 32, .	1.0	2

3

#	Article	IF	CITATIONS
37	Observation of a peculiar phenomenon in the cerium-ion-catalyzed Belousov-Zhabotinskii oscillator with acetylacetone in CSTR mode. Reaction Kinetics and Catalysis Letters, 1985, 28, 233-238.	0.6	0

38 Comment on: â€~ã€~Chaos in the Showalter–Noyes–Bar–Eli model of the Belousov–Zhabotinskii reaction''. Journal of Chemical Physics, 1990, 93, 2159-2160.