Haibo Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7220841/publications.pdf

Version: 2024-02-01

51	778	16	26
papers	citations	h-index	g-index
56	56	56	869
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Research on the modeling of burr formation process in micro-ball end milling operation on Ti–6Al–4V. International Journal of Advanced Manufacturing Technology, 2012, 62, 901-912.	3.0	83
2	General Principles for the Validation of Proarrhythmia Risk Prediction Models: An Extension of the CiPA <i>In Silico</i> Strategy. Clinical Pharmacology and Therapeutics, 2020, 107, 102-111.	4.7	67
3	A Heart for Diversity: Simulating Variability in Cardiac Arrhythmia Research. Frontiers in Physiology, 2018, 9, 958.	2.8	66
4	Synergistic Anti-arrhythmic Effects in Human Atria with Combined Use of Sodium Blockers and Acacetin. Frontiers in Physiology, 2017, 8, 946.	2.8	58
5	Computational Analysis of the Mode of Action of Disopyramide and Quinidine on hERG-Linked Short QT Syndrome in Human Ventricles. Frontiers in Physiology, 2017, 8, 759.	2.8	51
6	Atrial arrhythmogenicity of KCNJ2 mutations in short QT syndrome: Insights from virtual human atria. PLoS Computational Biology, 2017, 13, e1005593.	3.2	51
7	A circadian clock in the sinus node mediates day-night rhythms in Hcn4 and heart rate. Heart Rhythm, 2021, 18, 801-810.	0.7	46
8	Optogenetic Control of Heart Rhythm by Selective Stimulation of Cardiomyocytes Derived from Pnmt+ Cells in Murine Heart. Scientific Reports, 2017, 7, 40687.	3.3	42
9	Human Atrial Arrhythmogenesis and Sinus Bradycardia in KCNQ1-Linked Short QT Syndrome: Insights From Computational Modelling. Frontiers in Physiology, 2018, 9, 1402.	2.8	39
10	In silico assessment of genetic variation in KCNA5 reveals multiple mechanisms of human atrial arrhythmogenesis. PLoS Computational Biology, 2017, 13, e1005587.	3.2	32
11	An audit of uncertainty in multi-scale cardiac electrophysiology models. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190335.	3.4	25
12	Comparison of Electric- and Magnetic-Cardiograms Produced by Myocardial Ischemia in Models of the Human Ventricle and Torso. PLoS ONE, 2016, 11, e0160999.	2.5	25
13	In silico investigation of short QT syndrome-linked potassium channel mutations on electro-mechanical function of human atrial cells. , 2015 , , .		24
14	Populations of in silico myocytes and tissues reveal synergy of multiatrialâ€predominant K ⁺ â€current block in atrial fibrillation. British Journal of Pharmacology, 2020, 177, 4497-4515.	5.4	23
15	Sexâ€Specific Classification of Drugâ€Induced Torsade de Pointes Susceptibility Using Cardiac Simulations and Machine Learning. Clinical Pharmacology and Therapeutics, 2021, 110, 380-391.	4.7	22
16	Quantitative cross-species translators of cardiac myocyte electrophysiology: Model training, experimental validation, and applications. Science Advances, 2021, 7, eabg0927.	10.3	22
17	Transient outward K ⁺ current can strongly modulate action potential duration and initiate alternans in the human atrium. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H527-H542.	3.2	20
18	In-silico investigations of the functional impact of KCNA5 mutations on atrial mechanical dynamics. Journal of Molecular and Cellular Cardiology, 2017, 111, 86-95.	1.9	18

#	Article	IF	Citations
19	Intracellular Na+ Modulates Pacemaking Activity in Murine Sinoatrial Node Myocytes: An In Silico Analysis. International Journal of Molecular Sciences, 2021, 22, 5645.	4.1	13
20	Mechanistic insight into spontaneous transition from cellular alternans to arrhythmia—A simulation study. PLoS Computational Biology, 2018, 14, e1006594.	3.2	11
21	Electro-mechanical dynamics of spiral waves in a discrete 2D model of human atrial tissue. PLoS ONE, 2017, 12, e0176607.	2.5	10
22	Three-dimensional image reconstruction of distribution of Pnmt+ cell-derived cells in murine heart. Scientific Data, 2017, 4, 170134.	5.3	7
23	ECG Imaging to Detect the Site of Ventricular Ischemia Using Torso Electrodes: A Computational Study. Frontiers in Physiology, 2019, 10, 50.	2.8	4
24	The Research Progress of Micromilling in Machining Mechanism. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering, 2014, 50, 161.	0.5	4
25	Comparison of electric- and magnetic- cardiograms produced by myocardial ischemia in models of the human ventricle and torso. , $2015, , .$		3
26	Research on the Influence Factors for the Deflection of Micro-Ball-End Cutter in Micro-End-Milling Process. Materials Science Forum, 2011, 697-698, 84-87.	0.3	2
27	Research on the Modeling and Experimenting of Burr Formation Process in Double-Edged Micro-Plat End Milling Operation. Materials Science Forum, 2013, 770, 248-252.	0.3	2
28	Investigation of the mechanisms underlying cardiac alternans - insights from a computational study. , 2015, , .		1
29	Can principles of the surface potential be combined with knowledge of natural products to reduce atrial rhythm disturbances?. Acta Physiologica, 2018, 222, e12918.	3.8	1
30	Effects of Modulation of Small-Conductance Calcium-Activated Potassium Current on Atrial Electrophysiology and Arrhythmogenesis: A Population-Based Computational Study. Biophysical Journal, 2018, 114, 473a.	0.5	1
31	Novel regulation of the mammalian cardiac Na+ channel by dipeptidyl peptidase 10 interactions: An editorial comment. International Journal of Cardiology, 2019, 284, 74-76.	1.7	1
32	Effects of Varying Transverse and Axial Tubules in a Three-Dimensional Model of Calcium Signaling in the Human Atrial Myocyte. Biophysical Journal, 2019, 116, 231a-232a.	0.5	1
33	Interplay Between \hat{l}^2 -Adrenergic Stimulation and CaMKII Signaling Favors Human Atrial Arrhythmogenesis: Insights from Populations of Models. Biophysical Journal, 2020, 118, 494a.	0.5	1
34	Two Aspects of Cardiac Alternans: Difference and Correlation Between Them. , 0, , .		1
35	In silico investigation of the functional effects of KCNQ1-G269S mutation in human ventricles. , 2015, , .		0
36	Quantitative In Silico Analysis of the Arrhythmogenic CaMKII-Sodium-Calcium-CaMKII Feedback in the Failing Rabbit Ventricular Myocyte. Biophysical Journal, 2019, 116, 94a-95a.	0.5	0

#	Article	IF	CITATIONS
37	Effects of Ultrastructural Remodeling on Calcium Signaling and Electrophysiology in a Three-Dimensional Model of the Human Atrial Myocyte. Biophysical Journal, 2020, 118, 256a.	0.5	0
38	Quantitative Cross-Species Prediction of \hat{l}^2 -Adrenergic Response in Ventricular Myocytes. Biophysical Journal, 2020, 118, 344a.	0.5	0
39	A Machine Learning Approach for Investigating Sex Differences in Torsade De Pointes Susceptibility. Biophysical Journal, 2020, 118, 340a.	0.5	O
40	Pka and CaMKII Signaling Synergistically Promotes Atrial Arrhythmia in Populations of Human Atrial Tissues. Biophysical Journal, 2021, 120, 334a.	0.5	0
41	Quantifying the Arrhythmogenic Effects of Subcellular Structural Variations in a Three-Dimensional Model of the Human Atrial Myocyte. Biophysical Journal, 2021, 120, 334a.	0.5	O
42	Arrhythmogenic Crosstalk of Sodium, Calcium, Reactive Oxygen Species and Camkii Signaling in the Failing Rabbit Ventricular Myocyte - Insights from a Computational Study. Biophysical Journal, 2021, 120, 239a.	0.5	0
43	Synergistic Anti:arrhythmic Effects of Combined Blockade of Sodium and Ultra:rapid Delayed Rectifier Potassium Channels in Human Atria. , 0, , .		O
44	Modelling the Effects of Disopyramide on Short QT Syndrome Variant 1 in the Human Ventricles. , 0 , , .		0
45	In Silico Investigation of the Functional Impact of SCN10A Mutations in Human Atrial Cells. , 0, , .		O
46	A Multiscale Investigation of Global Electrical Heterogeneity: Effects of Body Habitus, Respiration, and Tissue Conductivity., 2018, 45, .		0
47	SPARC: Found in translation: quantitative predictors of cardiac myocyte responses to βâ€adrenergic stimulation across species. FASEB Journal, 2020, 34, 1-1.	0.5	O
48	A novel 3D spatial model of mouse sinoatrial node cells for investigating impact of microstructure changes on pacemaker activity. Biophysical Journal, 2022, 121, 13a.	0.5	0
49	Sex-dependent differences in Ca2+-related arrhythmia revealed by human atrial myocyte models. Biophysical Journal, 2022, 121, 231a.	0.5	O
50	Quantifying the interactive arrhythmogenic effects of cell ultrastructural remodeling and calcium-handling protein redistribution in a three-dimensional model of the human atrial myocyte. Biophysical Journal, 2022, 121, 372a.	0.5	0
51	Initiation and maintenance of arrhythmogenic action potential waves near the infarct zone in heart failure. Biophysical Journal, 2022, 121, 89a-90a.	0.5	O