List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7220720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pt-Co nanoparticles supported on hollow multi-shelled CeO2 as a catalyst for highly efficient toluene oxidation: Morphology control and the role of bimetal synergism. Journal of Colloid and Interface Science, 2022, 608, 48-59.	5.0	9
2	Efficient removal of Bisphenol A in water via piezocatalytic degradation by equivalent-vanadium-doped SrTiO3 nanofibers. Chemical Engineering Science, 2022, 247, 116707.	1.9	36
3	A mini-review on ZnIn2S4-Based photocatalysts for energy and environmental application. Green Energy and Environment, 2022, 7, 176-204.	4.7	86
4	Fabrication of an FAPbBr3/g-C3N4 heterojunction to enhance NO removal efficiency under visible-light irradiation. Chemical Engineering Journal, 2022, 430, 132968.	6.6	21
5	Mil-53(Fe)-loaded polyacrylonitrile membrane with superamphiphilicity and double hydrophobicity for effective emulsion separation and photocatalytic dye degradation. Separation and Purification Technology, 2022, 282, 119910.	3.9	37
6	Bi2WO6 quantum dots with oxygen vacancies combined with g-C3N4 for NO removal. Journal of Colloid and Interface Science, 2022, 609, 447-455.	5.0	12
7	Novel calixarene-based porous organic polymers with superfast removal rate and ultrahigh adsorption capacity for selective separation of cationic dyes. Chemical Engineering Journal, 2022, 433, 134442.	6.6	43
8	Hydrophilic porous PVDF membrane embedded with BaTiO3 featuring controlled oxygen vacancies for piezocatalytic water cleaning. Nano Energy, 2022, 94, 106930.	8.2	74
9	Preparation of a Bi12O15Cl6@W18O49@g-C3N4/PDI heterojunction with dual charge transfer paths and its photocatalytic performance for phenolic pollutants. Separation and Purification Technology, 2022, 287, 120539.	3.9	12
10	Elucidating the Characteristics of Palladium-Anchored CeO ₂ -Modified Hexagonal Nanosheet Co ₃ O ₄ Catalysts for the Complete Oxidation of Volatile Organic Compounds. Industrial & Engineering Chemistry Research, 2022, 61, 7537-7546.	1.8	6
11	High-Performance and Stable Two-Dimensional MXene-Polyethyleneimine Composite Lamellar Membranes for Molecular Separation. ACS Applied Materials & Interfaces, 2022, 14, 10237-10245.	4.0	26
12	Enhancing the Photodegradation Property of NO through the Construction of a SrTiO ₃ /GQDs/NH ₂ -UiO-66 Heterojunction. Industrial & Engineering Chemistry Research, 2022, 61, 3550-3560.	1.8	6
13	Heterostructured BiFeO3@CdS nanofibers with enhanced piezoelectric response for efficient piezocatalytic degradation of organic pollutants. Separation and Purification Technology, 2022, 290, 120861.	3.9	44
14	NiCo Alloy Nanoparticles on a N/C Dualâ€Doped Matrix as a Cathode Catalyst for Improved Microbial Fuel Cell Performance. Small, 2022, 18, e2106355.	5.2	14
15	Ultrathin Two-Dimensional BiOCl with Oxygen Vacancies Anchored in Three-Dimensional Porous g-C ₃ N ₄ to Construct a Hierarchical Z-Scheme Heterojunction for the Photocatalytic Degradation of NO. Industrial & Engineering Chemistry Research, 2022, 61, 317-329.	1.8	10
16	Tin-anchored Ti ₃ C ₂ quantum dots with high conductivity for efficient photocatalytic reduction. Environmental Science: Nano, 2022, 9, 2417-2426.	2.2	2
17	Cu, Co embedded N-enriched mesoporous carbon cathode catalyst for the efficient bioelectrochemical removal of phenanthrene in microbial fuel cell. Applied Surface Science, 2022, 599, 153759.	3.1	2
18	Metal-organic frameworks-derived manganese trioxide with uniformly loaded ultrasmall platinum nanoparticles boosting benzene combustion. Science of the Total Environment, 2022, 839, 156345.	3.9	7

#	Article	IF	CITATIONS
19	Oxygen vacancy-induced hydroxyl dipole reorientation in hydroxyapatite for enhanced piezocatalytic activity. Nano Energy, 2022, 100, 107473.	8.2	28
20	NH2-MIL-125(Ti) modified graphitic carbon nitride with carbon vacancy for efficient photocatalytic NO removal. Chemosphere, 2022, 307, 135660.	4.2	9
21	Efficient piezocatalytic effect of SrxBa1â^'xTiO3 solid solution nanocubes with inhomogeneous lattice strain for bisphenol A degradation. Chemical Engineering Science, 2022, 260, 117855.	1.9	6
22	Boosting photocatalytic activity for porphyrin-based D-A conjugated polymers via dual metallic sites regulation. Applied Catalysis B: Environmental, 2022, 317, 121724.	10.8	16
23	AIE-based fluorescent sensors for low concentration toxic ion detection in water. Journal of Hazardous Materials, 2021, 403, 123656.	6.5	72
24	Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide. Applied Catalysis B: Environmental, 2021, 280, 119409.	10.8	239
25	A visible-light active p-n heterojunction NiFe-LDH/Co3O4 supported on Ni foam as photoanode for photoelectrocatalytic removal of contaminants. Journal of Hazardous Materials, 2021, 402, 123515.	6.5	53
26	A π-π stacking perylene imide/Bi2WO6 hybrid with dual transfer approach for enhanced photocatalytic degradation. Journal of Colloid and Interface Science, 2021, 582, 1021-1032.	5.0	18
27	Noble-metal-free ultrathin MXene coupled with In2S3 nanoflakes for ultrafast photocatalytic reduction of hexavalent chromium. Applied Catalysis B: Environmental, 2021, 284, 119754.	10.8	76
28	Pt/MnO ₂ Nanoflowers Anchored to Boron Nitride Aerogels for Highly Efficient Enrichment and Catalytic Oxidation of Formaldehyde at Room Temperature. Angewandte Chemie - International Edition, 2021, 60, 6377-6381.	7.2	72
29	One-step fabrication of bimetallic CuCoOS as an efficient catalyst for Cr(<scp>vi</scp>) reduction. Environmental Science: Nano, 2021, 8, 2453-2463.	2.2	3
30	Enhanced Photocatalytic Oxidation of Nitric Oxide to MOF-derived Hollow Bimetallic Oxide Microcubes Supported on g-C ₃ N ₄ Nanosheets via p–n Heterojunction. Industrial & Engineering Chemistry Research, 2021, 60, 2921-2930.	1.8	13
31	Ultrasensitive humidity sensing using one-dimensional ï€-d conjugated coordination polymers for breath monitoring. Sensors and Actuators B: Chemical, 2021, 330, 129353.	4.0	17
32	Flower-like Pt/Fe ₂ O ₃ –CeO ₂ Catalysts for Highly Efficient Low-Temperature Catalytic Oxidation of Toluene. Industrial & Engineering Chemistry Research, 2021, 60, 5471-5481.	1.8	16
33	All-solid-state WO3/TQDs/In2S3 Z-scheme heterojunctions bridged by Ti3C2 quantum dots for efficient removal of hexavalent chromium and bisphenol A. Journal of Hazardous Materials, 2021, 409, 125027.	6.5	56
34	In situ assembly of a covalent organic framework composite membrane for dye separation. Journal of Membrane Science, 2021, 628, 119216.	4.1	41
35	Efficient piezocatalytic removal of BPA and Cr(VI) with SnS2/CNFs membrane by harvesting vibration energy. Nano Energy, 2021, 86, 106036.	8.2	74
36	Three-Dimensional g-C3N4/NH2-UiO-66 graphitic aerogel hybrids with recyclable property for enhanced photocatalytic elimination of nitric oxide. Chemical Engineering Journal, 2021, 418, 129117.	6.6	36

#	Article	IF	CITATIONS
37	Metalloporphyrin-based D-A type conjugated organic polymer nanotube for efficient photocatalytic degradation. Applied Catalysis B: Environmental, 2021, 291, 120108.	10.8	72
38	Highly efficient Pd catalysts loaded on La1â^'Sr MnO3 perovskite nanotube support for low-temperature toluene oxidation. Journal of Alloys and Compounds, 2021, 871, 159575.	2.8	16
39	Selective separation of oil-in-water emulsion with high efficiency by bio-inspired Janus membrane. Science China Technological Sciences, 2021, 64, 2211-2219.	2.0	5
40	Low Temperature Combustion of VOCs with Enhanced Catalytic Activity Over MnO ₂ Nanotubes Loaded with Pt and Ni–Fe Spinel. ACS Applied Materials & Interfaces, 2021, 13, 46830-46839.	4.0	20
41	3D hollow MXene@ZnIn2S4 heterojunction with rich zinc vacancies for highly efficient visible-light photocatalytic reduction. Journal of Colloid and Interface Science, 2021, 598, 398-408.	5.0	37
42	Construction of a ternary Z-scheme In2S3@Au@P3HT photocatalyst for the degradation of phenolic pollutants under visible light. Separation and Purification Technology, 2021, 272, 118787.	3.9	30
43	High-performance anode material based on S and N co-doped graphene/iron carbide nanocomposite for microbial fuel cells. Journal of Power Sources, 2021, 512, 230482.	4.0	32
44	Polymer of intrinsic microporosity coated on a metal-organic framework composite membrane for highly efficient dye separation. Journal of Membrane Science, 2021, 637, 119619.	4.1	21
45	The ultrasonic-induced-piezoelectric enhanced photocatalytic performance of ZnO/CdS nanofibers for degradation of bisphenol A. Journal of Alloys and Compounds, 2021, 885, 160987.	2.8	37
46	Enhanced piezocatalysis of polymorphic few-layered MoS2 nanosheets by phase engineering. Nano Energy, 2021, 90, 106527.	8.2	52
47	Construction of ultra-thin 2D CN-Br0.12/2%RhOx photo-catalyst with rapid electron and hole separation for efficient bisphenol A degradation. Applied Catalysis B: Environmental, 2021, 299, 120623.	10.8	33
48	Preparation of new triptycene- and pentiptycene-based crosslinked polymers and their adsorption behavior towards aqueous dyes and phenolic organic pollutants. Separation and Purification Technology, 2021, 278, 119495.	3.9	18
49	Construction of hollow In ₂ S ₃ /CdIn ₂ S ₄ heterostructures with high efficiency for Cr(<scp>vi</scp>) reduction. Environmental Science: Nano, 2021, 8, 1389-1397.	2.2	12
50	Prussian Blue Analogue/FeCoNi-Layered Double Hydroxide Nanorod Arrays on Nickel Foam for Urea Electrolysis. ACS Applied Nano Materials, 2021, 4, 12407-12414.	2.4	7
51	Improvement of the performance of ITO/a-SiOx/n-Si device by controllable sputtering power and reducible interface states. Materials Science in Semiconductor Processing, 2020, 105, 104702.	1.9	2
52	Removal of phenol from aqueous solution using acid-modified Pseudomonas putida-sepiolite/ZIF-8 bio-nanocomposites. Chemosphere, 2020, 239, 124708.	4.2	33
53	Hierarchical <i>Z</i> -scheme g-C ₃ N ₄ /Au/ZnIn ₂ S ₄ photocatalyst for highly enhanced visible-light photocatalytic nitric oxide removal and carbon dioxide conversion. Environmental Science: Nano, 2020, 7, 676-687.	2.2	79
54	Controlled fabrication of mesoporous ZSM-5 zeolite-supported PdCu alloy nanoparticles for complete oxidation of toluene. Applied Catalysis B: Environmental, 2020, 265, 118560.	10.8	51

#	Article	IF	CITATIONS
55	Surface Engineering of g ₃ N ₄ by Stacked BiOBr Sheets Rich in Oxygen Vacancies for Boosting Photocatalytic Performance. Angewandte Chemie, 2020, 132, 4549-4554.	1.6	27
56	Surface Engineering of gâ€C ₃ N ₄ by Stacked BiOBr Sheets Rich in Oxygen Vacancies for Boosting Photocatalytic Performance. Angewandte Chemie - International Edition, 2020, 59, 4519-4524.	7.2	271
57	Superamphiphilic and underwater superoleophobic membrane for oil/water emulsion separation and organic dye degradation. Journal of Membrane Science, 2020, 598, 117804.	4.1	78
58	An ion-in-conjugation polymer enables the detection of NO ₂ with parts-per-trillion sensitivity and ultrahigh selectivity. Journal of Materials Chemistry A, 2020, 8, 1052-1058.	5.2	23
59	Leadâ€free perovskite MASnBr ₃ â€based memristor for quaternary information storage. InformaÄnÃ-Materiály, 2020, 2, 743-751.	8.5	58
60	Visible-light-driven amino acids production from biomass-based feedstocks over ultrathin CdS nanosheets. Nature Communications, 2020, 11, 4899.	5.8	124
61	Hollow SnO2 nanotubes decorated with ZnIn2S4 nanosheets for enhanced visible-light photocatalytic activity. Journal of Alloys and Compounds, 2020, 843, 155772.	2.8	31
62	Nanocageâ€Shaped Co _{3â^`} <i>_x</i> Zr <i>_x</i> O ₄ Solidâ€Solution Supports Loaded with Pt Nanoparticles as Effective Catalysts for the Enhancement of Toluene Oxidation. Small, 2020, 16, e2005715.	5.2	10
63	Polycrystalline zirconium metal-organic framework membranes supported on flexible carbon cloth for organic solvent nanofiltration. Journal of Membrane Science, 2020, 615, 118551.	4.1	31
64	Allâ€Inorganic Ionic Polymerâ€Based Memristor for Highâ€Performance and Flexible Artificial Synapse. Advanced Functional Materials, 2020, 30, 2004245.	7.8	36
65	Modified-MOF-808-Loaded Polyacrylonitrile Membrane for Highly Efficient, Simultaneous Emulsion Separation and Heavy Metal Ion Removal. ACS Applied Materials & Interfaces, 2020, 12, 39227-39235.	4.0	109
66	Polymer-Coated Fe ₂ O ₃ Nanoparticles for Photocatalytic Degradation of Organic Materials and Antibiotics in Water. ACS Applied Nano Materials, 2020, 3, 9200-9208.	2.4	43
67	Direct Dual Z-Scheme Bi ₂ WO ₆ /GQDs/WO ₃ Inverse Opals for Enhanced Photocatalytic Activities under Visible Light. ACS Sustainable Chemistry and Engineering, 2020, 8, 7921-7927.	3.2	55
68	Polysquaramides: Rapid and stable humidity sensing for breath monitoring and morse code communication. Sensors and Actuators B: Chemical, 2020, 320, 128390.	4.0	26
69	A Selfâ€Cleaning Heterostructured Membrane for Efficient Oilâ€inâ€Water Emulsion Separation with Stable Flux. Advanced Materials, 2020, 32, e2001265.	11.1	144
70	Hierarchical core–shell heterostructures of ZnIn2S4 nanosheets on electrospun In2O3 nanofibers with highly enhanced photocatalytic activity. Journal of Hazardous Materials, 2020, 398, 122889.	6.5	79
71	Conjugated zwitterion-inspired flexible ternary resistive memory from rhodamine dyes. Journal of Materials Chemistry C, 2020, 8, 7658-7662.	2.7	13
72	Z-scheme photocatalytic NO removal on a 2D/2D iodine doped BiOIO3/g-C3N4 under visible-light irradiation. Journal of Colloid and Interface Science, 2020, 576, 426-434.	5.0	39

#	Article	IF	CITATIONS
73	Conjugate Polymer-clothed TiO2@V2O5 nanobelts and their enhanced visible light photocatalytic performance in water remediation. Journal of Colloid and Interface Science, 2020, 578, 402-411.	5.0	42
74	p-n Heterojunction of BiOI/ZnO nanorod arrays for piezo-photocatalytic degradation of bisphenol A in water. Journal of Hazardous Materials, 2020, 399, 123109.	6.5	147
75	Rh-Doped SrTiO ₃ inverse opal with piezoelectric effect for enhanced visible-light-driven photodegradation of bisphenol A. Environmental Science: Nano, 2020, 7, 2267-2277.	2.2	25
76	Efficient reduction of Cr(VI) by a BMO/Bi2S3 heterojunction via synergistic adsorption and photocatalysis under visible light. Journal of Hazardous Materials, 2020, 400, 123243.	6.5	81
77	Construction of Pd-Modified NiCoO <i>_x</i> Hollow Nanospheres with Surface Hydroxyls and Oxygen Vacancies for Highly Enhanced Catalytic Toluene Oxidation Activity. ACS Sustainable Chemistry and Engineering, 2020, 8, 10581-10587.	3.2	25
78	Highly Efficient Catalysts of Bimetallic Pt–Ru Nanocrystals Supported on Ordered ZrO ₂ Nanotube for Toluene Oxidation. ACS Applied Materials & Interfaces, 2020, 12, 13781-13789.	4.0	39
79	Facile fabrication of ZnO/MoS2 p-n junctions on Ni foam for efficient degradation of organic pollutants through photoelectrocatalytic process. Solar Energy, 2020, 199, 164-172.	2.9	50
80	Construction of Hierarchical Hollow Co ₉ S ₈ /ZnIn ₂ S ₄ Tubular Heterostructures for Highly Efficient Solar Energy Conversion and Environmental Remediation. Angewandte Chemie, 2020, 132, 8332-8338.	1.6	53
81	Construction of Hierarchical Hollow Co ₉ S ₈ /ZnIn ₂ S ₄ Tubular Heterostructures for Highly Efficient Solar Energy Conversion and Environmental Remediation. Angewandte Chemie - International Edition, 2020, 59, 8255-8261.	7.2	233
82	ZnIn2S4 grown on nitrogen-doped hollow carbon spheres: An advanced catalyst for Cr(VI) reduction. Journal of Hazardous Materials, 2020, 391, 122205.	6.5	62
83	Preparation of aryl polysulfonates <i>via</i> a highly efficient SuFEx click reaction, their controllable degradation and functionalized behavior. Polymer Chemistry, 2020, 11, 3120-3124.	1.9	17
84	Thermoelectric properties of layered ternary telluride <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Nb</mml:mi><mml:r Physical Review Materials, 2020, 4, .</mml:r </mml:msub></mml:mrow></mml:math 	nn ø3 x/mn	nl:man>
85	3D Goldâ€Modified Cerium and Cobalt Oxide Catalyst on a Graphene Aerogel for Highly Efficient Catalytic Formaldehyde Oxidation. Small, 2019, 15, e1804415.	5.2	34
86	Eyeâ€Readable Detection and Oxidation of CO with a Platinumâ€Based Catalyst and a Binuclear Rhodium Complex. Angewandte Chemie, 2019, 131, 12386-12391.	1.6	5
87	Self-Healing Graphene-Reinforced Composite for Highly Efficient Oil/Water Separation. Langmuir, 2019, 35, 13950-13957.	1.6	9
88	Platinum‣upported Zirconia Nanotube Arrays Supported on Graphene Aerogels Modified with Metal–Organic Frameworks: Adsorption and Oxidation of Formaldehyde at Room Temperature. Chemistry - A European Journal, 2019, 25, 16718-16724.	1.7	12
89	Hollow In ₂ O ₃ @ZnFe ₂ O ₄ heterojunctions for highly efficient photocatalytic degradation of tetracycline under visible light. Environmental Science: Nano, 2019, 6, 3123-3132.	2.2	50
90	Durable and Robust Self-Healing Superhydrophobic Co-PDMS@ZIF-8-Coated MWCNT Films for Extremely Efficient Emulsion Separation. ACS Applied Materials & Interfaces, 2019, 11, 38313-38320.	4.0	51

#	Article	IF	CITATIONS
91	Engineering black phosphorus to porous g-C ₃ N ₄ -metal–organic framework membrane: a platform for highly boosting photocatalytic performance. Journal of Materials Chemistry A, 2019, 7, 4408-4414.	5.2	79
92	Ternary photocatalyst of atomic-scale Pt coupled with MoS2 co-loaded on TiO2 surface for highly efficient degradation of gaseous toluene. Applied Catalysis B: Environmental, 2019, 256, 117877.	10.8	56
93	Fabrication of visible-light-active ZnO/ZnFe-LDH heterojunction on Ni foam for pollutants removal with enhanced photoelectrocatalytic performance. Solar Energy, 2019, 188, 593-602.	2.9	44
94	Water-soluble metal nanoclusters: recent advances in molecular-level exploration and biomedical applications. Dalton Transactions, 2019, 48, 10385-10392.	1.6	30
95	Durable and Stable MnMoO ₄ -Coated Copper Mesh for Highly Efficient Oil-in-Water Emulsion Separation and Photodegradation of Organic Contaminants. ACS Applied Materials & Interfaces, 2019, 11, 23789-23797.	4.0	48
96	ZIFâ€67â€Derived 3D Hollow Mesoporous Crystalline Co ₃ O ₄ Wrapped by 2D gâ€C ₃ N ₄ Nanosheets for Photocatalytic Removal of Nitric Oxide. Small, 2019, 15, e1902291.	5.2	93
97	Eyeâ€Readable Detection and Oxidation of CO with a Platinumâ€Based Catalyst and a Binuclear Rhodium Complex. Angewandte Chemie - International Edition, 2019, 58, 12258-12263.	7.2	13
98	An Efficient Photocatalyst Based on Black TiO 2 Nanoparticles and Porous Carbon with High Surface Area: Degradation of Antibiotics and Organic Pollutants in Water. ChemPlusChem, 2019, 84, 474-480.	1.3	9
99	Fabrication of Bi2MoO6/ZnO hierarchical heterostructures with enhanced visible-light photocatalytic activity. Applied Catalysis B: Environmental, 2019, 250, 313-324.	10.8	353
100	One-step in-situ preparation of N-doped TiO2@C derived from Ti3C2 MXene for enhanced visible-light driven photodegradation. Applied Catalysis B: Environmental, 2019, 251, 154-161.	10.8	280
101	Construction of g-C3N4/PDI@MOF heterojunctions for the highly efficient visible light-driven degradation of pharmaceutical and phenolic micropollutants. Applied Catalysis B: Environmental, 2019, 250, 150-162.	10.8	293
102	One-step synthesis of Er3+-doped BiOI0.5Cl0.5 supported on Ni foam with enhanced photocatalytic degradation under visible light. Solar Energy, 2019, 182, 420-428.	2.9	20
103	Robust and durable self-healing superhydrophobic polymer-coated MWCNT film for highly efficient emulsion separation. Environmental Science: Nano, 2019, 6, 1259-1266.	2.2	29
104	Enhancement of organic pollutants bio-decontamination from aqueous solution using newly-designed Pseudomonas putida-GA/MIL-100(Fe) bio-nanocomposites. Environmental Research, 2019, 173, 237-245.	3.7	14
105	Terminal amino monomethylation-triggered intermolecular H- to J-aggregations to realize tunable memory devices. Journal of Materials Chemistry C, 2019, 7, 4863-4869.	2.7	12
106	Superhydrophobic Metal–Organic Framework Membrane with Self-Repairing for High-Efficiency Oil/Water Emulsion Separation. ACS Sustainable Chemistry and Engineering, 2019, 7, 2709-2717.	3.2	64
107	Zâ€Scheme 2D/2D Heterojunction of Black Phosphorus/Monolayer Bi ₂ WO ₆ Nanosheets with Enhanced Photocatalytic Activities. Angewandte Chemie, 2019, 131, 2095-2099.	1.6	58
108	Zâ€Scheme 2D/2D Heterojunction of Black Phosphorus/Monolayer Bi ₂ WO ₆ Nanosheets with Enhanced Photocatalytic Activities. Angewandte Chemie - International Edition, 2019, 58, 2073-2077.	7.2	445

#	Article	IF	CITATIONS
109	Electronic structure of molybdenum-involved amorphous silica buffer layer in MoOx/n-Si heterojunction. Applied Surface Science, 2019, 473, 20-24.	3.1	6
110	Hollow Mesoporous Co ₃ O ₄ –CeO ₂ Composite Nanotubes with Open Ends for Efficient Catalytic CO Oxidation. ChemSusChem, 2019, 12, 1084-1090.	3.6	32
111	Integration of 3D macroscopic graphene aerogel with 0D-2D AgVO3-g-C3N4 heterojunction for highly efficient photocatalytic oxidation of nitric oxide. Applied Catalysis B: Environmental, 2019, 243, 576-584.	10.8	60
112	Morphology-controlled fabrication of CNT@MoS2/SnS2 nanotubes for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. Journal of Alloys and Compounds, 2019, 784, 282-292.	2.8	40
113	Self-healing and superwettable nanofibrous membranes for efficient separation of oil-in-water emulsions. Journal of Materials Chemistry A, 2019, 7, 1629-1637.	5.2	42
114	Zeolitic Imidazolate Framework 8â€Đerived Au@ZnO for Efficient and Robust Photocatalytic Degradation of Tetracycline. Chinese Journal of Chemistry, 2019, 37, 148-154.	2.6	21
115	TiO2/sulfonated graphene oxide/Ag nanoparticle membrane: In situ separation and photodegradation of oil/water emulsions. Journal of Membrane Science, 2018, 554, 16-25.	4.1	82
116	Engineering 3D Ru/Graphene Aerogel Using Metal–Organic Frameworks: Capture and Highly Efficient Catalytic CO Oxidation at Room Temperature. Small, 2018, 14, e1800343.	5.2	34
117	3D Aerogel of Graphitic Carbon Nitride Modified with Perylene Imide and Graphene Oxide for Highly Efficient Nitric Oxide Removal under Visible Light. Small, 2018, 14, e1800416.	5.2	75
118	AgBr-loaded hollow porous carbon nitride with ultrahigh activity as visible light photocatalysts for water remediation. Applied Catalysis B: Environmental, 2018, 229, 155-162.	10.8	40
119	N-Doped and CdSe-Sensitized 3D-Ordered TiO ₂ Inverse Opal Films for Synergistically Enhanced Photocatalytic Performance. ACS Sustainable Chemistry and Engineering, 2018, 6, 4000-4007.	3.2	36
120	Highly efficient polymerization via sulfur(vi)-fluoride exchange (SuFEx): novel polysulfates bearing a pyrazoline–naphthylamide conjugated moiety and their electrical memory performance. Polymer Chemistry, 2018, 9, 1040-1044.	1.9	20
121	Role of nuclei in controllable MoS2 growth by modified chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 2018, 29, 7425-7434.	1.1	2
122	Recyclable Carbon Nanofibers@Hierarchical I-Doped Bi ₂ O ₂ CO ₃ –MoS ₂ Membranes for Highly Efficient Water Remediation under Visible-Light Irradiation. ACS Sustainable Chemistry and Engineering, 2018, 6, 2676-2683.	3.2	29
123	SnS2/SnO2 heterostructured nanosheet arrays grown on carbon cloth for efficient photocatalytic reduction of Cr(VI). Journal of Colloid and Interface Science, 2018, 514, 306-315.	5.0	73
124	Fabrication of graphitic-C3N4 quantum dots/graphene-InVO4 aerogel hybrids with enhanced photocatalytic NO removal under visible-light irradiation. Applied Catalysis B: Environmental, 2018, 236, 45-52.	10.8	97
125	A smart membrane with antifouling capability and switchable oil wettability for high-efficiency oil/water emulsions separation. Journal of Membrane Science, 2018, 555, 69-77.	4.1	84
126	Preparation of ZnIn2S4 nanosheet-coated CdS nanorod heterostructures for efficient photocatalytic reduction of Cr(VI). Applied Catalysis B: Environmental, 2018, 232, 164-174.	10.8	251

#	Article	IF	CITATIONS
127	Polysquaraines: Novel humidity sensor materials with ultra-high sensitivity and good reversibility. Sensors and Actuators B: Chemical, 2018, 255, 1147-1152.	4.0	53
128	Hollow Porous Carbon with inâ€situ Generated Monodisperse Gold Nanoclusters for Efficient CO Oxidation. ChemCatChem, 2018, 10, 837-842.	1.8	4
129	Adsorption and biodegradation of dye in wastewater with Fe3O4@MIL-100 (Fe) core–shell bio-nanocomposites. Chemosphere, 2018, 191, 315-323.	4.2	125
130	Cyclodextrin–gold nanocluster decorated TiO ₂ enhances photocatalytic decomposition of organic pollutants. Journal of Materials Chemistry A, 2018, 6, 1102-1108.	5.2	90
131	An I-doped (BiO)2CO3 nanosheets-wrapped carbon cloth for highly efficient separation of oil-in-water emulsions. Journal of Membrane Science, 2018, 567, 209-215.	4.1	14
132	TiO ₂ Nanoparticles Anchored onto the Metal–Organic Framework NH ₂ -MIL-88B(Fe) as an Adsorptive Photocatalyst with Enhanced Fenton-like Degradation of Organic Pollutants under Visible Light Irradiation. ACS Sustainable Chemistry and Engineering, 2018, 6, 16186-16197	3.2	133
133	Multilayer Network Membranes Based on Evenly Dispersed Nanofibers/Co ₃ O ₄ Nanoneedles for Highâ€Efficiency Separation of Micrometerâ€Scale Oil/Water Emulsions. Advanced Materials Interfaces, 2018, 5, 1801004.	1.9	6
134	Surface modification of polysquaraines to sense humidity within a second for breath monitoring. Sensors and Actuators B: Chemical, 2018, 271, 137-146.	4.0	44
135	3D ordered MoP inverse opals deposited with CdS quantum dots for enhanced visible light photocatalytic activity. Applied Catalysis B: Environmental, 2018, 238, 255-262.	10.8	54
136	One-Step Synthesis of Honeycomb-Like Carbon Nitride Isotype Heterojunction as Low-Cost, High-Performance Photocatalyst for Removal of NO. ACS Sustainable Chemistry and Engineering, 2018, 6, 11063-11070.	3.2	31
137	Bifunctional Hybrid a-SiO <i>_x</i> (Mo) Layer for Hole-Selective and Interface Passivation of Highly Efficient MoO <i>_x</i> /i>/a-SiO <i>_x</i> (Mo)/n-Si Heterojunction Photovoltaic Device. ACS Applied Materials & Interfaces, 2018, 10, 27454-27464.	4.0	28
138	Cyclodextrin-functionalized Ag/AgCl foam with enhanced photocatalytic performance for water purification. Journal of Colloid and Interface Science, 2018, 531, 11-17.	5.0	25
139	Hierarchical Titanium Dioxide Nanowire/Metal–Organic Framework/Carbon Nanofiber Membranes for Highly Efficient Photocatalytic Degradation of Hydrogen Sulfide. Chemistry - A European Journal, 2018, 24, 15019-15025.	1.7	25
140	Polyacrylic esters with a "one-is-enough―effect and investigation of their AIEE behaviours and cyanide detection in aqueous solution. Polymer Chemistry, 2018, 9, 3893-3899.	1.9	15
141	Polyethylene imine-grafted ACF@BiOI0.5Cl0.5 as a recyclable photocatalyst for high-efficient dye removal by adsorption-combined degradation. Applied Surface Science, 2017, 403, 80-88.	3.1	16
142	Coral-inspired nanoscale design of porous SnS2 for photocatalytic reduction and removal of aqueous Cr (VI). Applied Catalysis B: Environmental, 2017, 207, 404-411.	10.8	94
143	Molecularly imprinted magnetic microparticles for the simultaneous detection and extraction of Rhodamine B. Sensors and Actuators B: Chemical, 2017, 246, 286-292.	4.0	33
144	A Novel Batâ€Shaped Dicyanomethyleneâ€4 <i>H</i> â€pyranâ€Functionalized Naphthalimide for Highly Efficient Solutionâ€Processed Multilevel Memory Devices. Chemistry - an Asian Journal. 2017. 12. 1374-1380.	1.7	6

#	Article	IF	CITATIONS
145	In situ fabrication of Bi2O2CO3/MoS2 on carbon nanofibers for efficient photocatalytic removal of NO under visible-light irradiation. Applied Catalysis B: Environmental, 2017, 217, 224-231.	10.8	80
146	1D Ï€â€d Conjugated Coordination Polymers for Multilevel Memory of Longâ€Term and Highâ€Temperature Stability. Advanced Electronic Materials, 2017, 3, 1700107.	2.6	73
147	Urchin-Inspired TiO ₂ @MIL-101 Double-Shell Hollow Particles: Adsorption and Highly Efficient Photocatalytic Degradation of Hydrogen Sulfide. Chemistry of Materials, 2017, 29, 5612-5616.	3.2	83
148	Highly efficient simultaneous adsorption and biodegradation of a highly-concentrated anionic dye by a high-surface-area carbon-based biocomposite. Chemosphere, 2017, 179, 139-147.	4.2	25
149	Surface engineering to achieve organic ternary memory with a high device yield and improved performance. Chemical Science, 2017, 8, 2344-2351.	3.7	31
150	Nanofibrous metal–organic framework composite membrane for selective efficient oil/water emulsion separation. Journal of Membrane Science, 2017, 543, 10-17.	4.1	137
151	Better Organic Ternary Memory Performance through Selfâ€Assembled Alkyltrichlorosilane Monolayers on Indium Tin Oxide (ITO) Surfaces. Chemistry - A European Journal, 2017, 23, 16393-16400.	1.7	6
152	Racemic Effect on the Performance of Organic Multilevel Memory: Beyond Molecular Design. Advanced Materials Technologies, 2017, 2, 1700202.	3.0	14
153	Fabrication of Photocontrolled Surfaces for Oil/Water Separation through Sulfur(VI) Fluoride Exchange. Chemistry - A European Journal, 2017, 23, 14712-14717.	1.7	25
154	A novel strategy to immobilize bacteria on polymer particles for efficient adsorption and biodegradation of soluble organics. Nanoscale, 2017, 9, 11530-11536.	2.8	9
155	Poly(3,4-ethylenedioxythiophene)–Poly(styrenesulfonate) Interlayer Insertion Enables Organic Quaternary Memory. ACS Applied Materials & Interfaces, 2017, 9, 27847-27852.	4.0	18
156	Bio-Engineered Graphene-Based Cage for Efficient Local Enrichment and Biodegradation of Aqueous Organic Wastes. Scientific Reports, 2017, 7, 1271.	1.6	2
157	A novel ternary memory property achieved through rational introduction of end-capping naphthalimide acceptors. Journal of Materials Chemistry C, 2017, 5, 7961-7968.	2.7	26
158	Ionâ€inâ€Conjugation: Squaraine as an Ultrasensitive Ammonia Sensor Material. Small, 2017, 13, 1602190.	5.2	34
159	Upgrading Electroresistive Memory from Binary to Ternary Through Singleâ€Atom Substitution in the Molecular Design. Chemistry - an Asian Journal, 2017, 12, 45-51.	1.7	20
160	Dual-layer copper mesh for integrated oil-Water separation and water purification. Applied Catalysis B: Environmental, 2017, 200, 594-600.	10.8	66
161	Towards Highlyâ€Efficient Phototriggered Data Storage by Utilizing a Diketopyrrolopyrroleâ€Based Photoelectronic Small Molecule. Chemistry - an Asian Journal, 2016, 11, 2078-2084.	1.7	7
162	A Robust Absorbent Material Based on Lightâ€Responsive Superhydrophobic Melamine Sponge for Oil Recovery. Advanced Materials Interfaces, 2016, 3, 1500683.	1.9	96

#	Article	IF	CITATIONS
163	Improving Memory Performances by Adjusting the Symmetry and Polarity of <i>O</i> â€Fluoroazobenzeneâ€Based Molecules. Chemistry - an Asian Journal, 2016, 11, 512-519.	1.7	9
164	Ternary Flexible Electroâ€resistive Memory Device based on Small Molecules. Chemistry - an Asian Journal, 2016, 11, 1624-1630.	1.7	18
165	Organic Multilevel Memory Devices of Longâ€Term Environmental Stability via Incorporation of Fluorine. Advanced Electronic Materials, 2016, 2, 1500474.	2.6	32
166	Efficient simultaneous adsorption-biodegradation of high-concentrated N,N-dimethylformamide from water by Paracoccus denitrificans-graphene oxide microcomposites. Scientific Reports, 2016, 6, 20003.	1.6	15
167	Comparison of two strategies to improve organic ternary memory performance: 3-Hexylthiophene linkage and fluorine substitution. Dyes and Pigments, 2016, 130, 306-313.	2.0	15
168	Adjusting the Proportion of Electronâ€Withdrawing Groups in a Graft Functional Polymer for Multilevel Memory Performance. Chemistry - an Asian Journal, 2016, 11, 102-111.	1.7	4
169	Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO. Nanoscale, 2016, 8, 12066-12072.	2.8	40
170	A versatile and cost-effective reduced graphene oxide-crosslinked polyurethane sponge for highly effective wastewater treatment. RSC Advances, 2016, 6, 38350-38355.	1.7	29
171	Flexible Electrospun Carbon Nanofiber/Tin(IV) Sulfide Core/Sheath Membranes for Photocatalytically Treating Chromium(VI)-Containing Wastewater. ACS Applied Materials & Interfaces, 2016, 8, 28671-28677.	4.0	81
172	Micro–Nanocomposites in Environmental Management. Advanced Materials, 2016, 28, 10443-10458.	11.1	131
173	A facile method to fabricate a double-layer stainless steel mesh for effective separation of water-in-oil emulsions with high flux. Journal of Materials Chemistry A, 2016, 4, 18815-18821.	5.2	86
174	Fabrication of Unique Magnetic Bionanocomposite for Highly Efficient Removal of Hexavalent Chromium from Water. Scientific Reports, 2016, 6, 31090.	1.6	7
175	Negative effect on molecular planarity to achieve organic ternary memory: triphenylamine as the spacer. Science China Chemistry, 2016, 59, 692-698.	4.2	7
176	Surfaceâ€Nanoengineered Bacteria for Efficient Local Enrichment and Biodegradation of Aqueous Organic Wastes: Using Phenol as a Model Compound. Advanced Materials, 2016, 28, 2916-2922.	11.1	28
177	Hollow Mesoporous Silica Nanocarriers with Multifunctional Capping Agents for In Vivo Cancer Imaging and Therapy. Small, 2016, 12, 360-370.	5.2	47
178	Inserting Thienyl Linkers into Conjugated Molecules for Efficient Multilevel Electronic Memory: A New Understanding of Chargeâ€Trapping in Organic Materials. Chemistry - an Asian Journal, 2016, 11, 906-914.	1.7	23
179	A salification-induced charge transfer effect for improving the resistive memory performance of azo derivative-based devices. RSC Advances, 2016, 6, 10471-10477.	1.7	6
180	Promotion of reversible Li+ storage in transition metal dichalcogenides by Ag nanoclusters. NPG Asia Materials, 2016, 8, e247-e247.	3.8	16

#	Article	IF	CITATIONS
181	Rational Design of Small Molecules to Implement Organic Quaternary Memory Devices. Advanced Functional Materials, 2016, 26, 146-154.	7.8	102
182	Insertion of conjugated bridges in organic backbone for better multilevel memory performance: The role of alkynyl group. Organic Electronics, 2016, 28, 155-162.	1.4	19
183	A Robust and Cost-Effective Superhydrophobic Graphene Foam for Efficient Oil and Organic Solvent Recovery. Small, 2015, 11, 5222-5229.	5.2	177
184	Altering the Position of Phenyl Substitution to Adjust Film Morphology and Memory Device Performance. Chemistry - an Asian Journal, 2015, 10, 1474-1479.	1.7	4
185	Controlling Crystallite Orientation of Diketopyrrolopyrroleâ€Based Small Molecules in Thin Films for Highly Reproducible Multilevel Memory Device: Role of Furan Substitution. Advanced Functional Materials, 2015, 25, 4246-4254.	7.8	76
186	Multilevel Conductance Switching of a Memory Device Induced by Enhanced Intermolecular Charge Transfer. Advanced Materials, 2015, 27, 5968-5973.	11.1	100
187	Effects of gradual oxidation of aromatic sulphur-heterocycle derivatives on multilevel memory data storage performance. Journal of Materials Chemistry C, 2015, 3, 2033-2039.	2.7	44
188	A Facile and Universal Method to Prepare Hydrophilic Molecularly Imprinted Microspheres by Encapsulating a Polymer in Hollow Mesoporous Silica Microspheres. Chemistry - an Asian Journal, 2015, 10, 722-727.	1.7	13
189	Effect of single atom substitution in benzochalcogendiazole acceptors on the performance of ternary memory devices. Journal of Materials Chemistry C, 2015, 3, 9145-9153.	2.7	40
190	A reusable immobilization matrix for the biodegradation of phenol at 5000â€mg/L. Scientific Reports, 2015, 5, 8628.	1.6	15
191	Two quinoxaline derivatives designed from isomer chemistry for nonvolatile ternary memory device applications. Dyes and Pigments, 2015, 122, 66-73.	2.0	11
192	Enhancing the performance of catalytic AuPt nanoparticles in nonaqueous lithium–oxygen batteries. Nanoscale, 2015, 7, 12906-12912.	2.8	25
193	Preparing non-volatile resistive switching memories by tuning the content of Au@air@TiO ₂ -h yolk–shell microspheres in a poly(3-hexylthiophene) layer. Nanoscale, 2015, 7, 19579-19585.	2.8	9
194	Tuning the fluorescence of aggregates for end-functionalized polymers through varying polymer chains with different polarities. RSC Advances, 2015, 5, 8167-8174.	1.7	16
195	Triggering DRAM/SRAM memory behaviors by single atom substitution to alter the molecular planarity. Journal of Materials Chemistry C, 2015, 3, 8605-8611.	2.7	19
196	Near-infrared light-controlled drug release and cancer therapy with polymer-caged upconversion nanoparticles. RSC Advances, 2015, 5, 5269-5276.	1.7	41
197	Graphene Foam with Switchable Oil Wettability for Oil and Organic Solvents Recovery. Advanced Functional Materials, 2015, 25, 597-605.	7.8	138
198	A new magnetic nanocomposite for selective detection and removal of trace copper ions from water. Journal of Materials Chemistry A, 2015, 3, 1265-1271.	5.2	30

#	Article	IF	CITATIONS
199	Decreasing the Energy Consumption of Memory Devices by Enhancing the Conjugation Extent of the Terminal Electronâ€Donating Moieties within Molecules. Chemistry - an Asian Journal, 2015, 10, 461-467.	1.7	2
200	Double Transition-Metal Chalcogenide as a High-Performance Lithium-Ion Battery Anode Material. Industrial & Engineering Chemistry Research, 2014, 53, 17901-17908.	1.8	44
201	A hollow porous magnetic nanocarrier for efficient near-infrared light- and pH-controlled drug release. RSC Advances, 2014, 4, 51055-51061.	1.7	7
202	Amphiphilic copolymer coated upconversion nanoparticles for near-infrared light-triggered dual anticancer treatment. Nanoscale, 2014, 6, 14903-14910.	2.8	48
203	Preparation of 4-dicyanomethylene-2,6-distyryl-4H-pyran derivatives, their functional polystyrenes and study of their different aggregation induced emission behaviors. Journal of Materials Chemistry C, 2014, 2, 2082-2088.	2.7	22
204	Light-responsive amphiphilic copolymer coated nanoparticles as nanocarriers and real-time monitors for controlled drug release. Journal of Materials Chemistry B, 2014, 2, 1182.	2.9	63
205	Water-soluble Fe ₃ O ₄ superparamagnetic nanocomposites for the removal of low concentration mercury(<scp>ii</scp>) ions from water. RSC Advances, 2014, 4, 47643-47648.	1.7	23
206	Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS 2 /graphene hybrid with enhanced lithium storage performance. Nano Energy, 2014, 10, 144-152.	8.2	113
207	Improving the electrical memory performance of pyrazoline moiety via the preparation of its hyperbranched copolymer. Polymer Chemistry, 2014, 5, 2602.	1.9	19
208	Facile synthesis and electrochemical properties of two dimensional layered MoS2/graphene composite for reversible lithium storage. Journal of Power Sources, 2014, 251, 264-268.	4.0	77
209	Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: Microstructure and electrochemical lithium storage. Journal of Power Sources, 2014, 264, 262-271.	4.0	85
210	In situ nitrogenated graphene–few-layer WS2 composites for fast and reversible Li+ storage. Nanoscale, 2013, 5, 7890.	2.8	182
211	Coumarin-containing photo-responsive nanocomposites for NIR light-triggered controlled drug release via a two-photon process. Journal of Materials Chemistry B, 2013, 1, 5942.	2.9	109
212	Facile synthesis of MoS2/graphene composites: effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage. RSC Advances, 2013, 3, 21675.	1.7	62
213	Amphiphilic Polymeric Nanocarriers with Luminescent Gold Nanoclusters for Concurrent Bioimaging and Controlled Drug Release. Advanced Functional Materials, 2013, 23, 4324-4331.	7.8	105
214	Visible-light degradable polymer coated hollow mesoporous silica nanoparticles for controlled drug release and cell imaging. Journal of Materials Chemistry B, 2013, 1, 4628.	2.9	59
215	CTAB-assisted synthesis of single-layer MoS ₂ –graphene composites as anode materials of Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 2202-2210.	5.2	410
216	Grapheneâ€Like MoS ₂ /Graphene Composites: Cationic Surfactantâ€Assisted Hydrothermal Synthesis and Electrochemical Reversible Storage of Lithium. Small, 2013, 9, 3693-3703.	5.2	322

#	Article	IF	CITATIONS
217	A facile preparation of targetable pH-sensitive polymeric nanocarriers with encapsulated magnetic nanoparticles for controlled drug release. Journal of Materials Chemistry, 2012, 22, 25354.	6.7	42
218	Light-triggered reversible assemblies of azobenzene-containing amphiphilic copolymer with β-cyclodextrin-modified hollow mesoporous silica nanoparticles for controlled drug release. Chemical Communications, 2012, 48, 10010.	2.2	102
219	Facile preparation of coating fluorescent hollow mesoporous silica nanoparticles with pH-sensitive amphiphilic diblock copolymer for controlled drug release and cell imaging. Soft Matter, 2012, 8, 5309.	1.2	50
220	Hollow mesoporous silica nanoparticles conjugated with pH-sensitive amphiphilic diblock polymer for controlled drug release. Microporous and Mesoporous Materials, 2012, 152, 16-24.	2.2	62
221	Reversible Lithiumâ€lon Storage in Silverâ€Treated Nanoscale Hollow Porous Silicon Particles. Angewandte Chemie - International Edition, 2012, 51, 2409-2413.	7.2	299
222	Graphene-Encapsulated Hollow Fe ₃ O ₄ Nanoparticle Aggregates As a High-Performance Anode Material for Lithium Ion Batteries. ACS Applied Materials & Interfaces, 2011, 3, 3078-3083.	4.0	288
223	pH-responsive polymeric carrier encapsulated magnetic nanoparticles for cancer targeted imaging and delivery. Journal of Materials Chemistry, 2011, 21, 12682.	6.7	43
224	pH-responsive polymeric-cargo encapsulated magnetic nanoparticles for selective release and imaging. Journal of Controlled Release, 2011, 152, e67-e68.	4.8	3
225	A novel pH-sensitive polymeric fluorescent probe: Synthesis, characterization and optical properties. Materials Chemistry and Physics, 2010, 120, 614-618.	2.0	6
226	Modification of magnetic silica/iron oxide nanocomposites with fluorescent polymethacrylic acid for cancer targeting and drug delivery. Journal of Materials Chemistry, 2010, 20, 6422.	6.7	85
227	A novel degradable polymeric carrier for selective release and imaging of magnetic nanoparticles. Chemical Communications, 2010, 46, 6708.	2.2	30