Elisabeta Lusso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7220689/publications.pdf

Version: 2024-02-01

71651 87843 5,791 81 38 76 citations h-index g-index papers 83 83 83 3523 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	THE BULK OF THE BLACK HOLE GROWTH SINCE (i>ze>i> $\hat{a}^{1}/4$ 1 OCCURS IN A SECULAR UNIVERSE: NO MAJOR MERGER-AGN CONNECTION. Astrophysical Journal, 2011, 726, 57.	1.6	315
2	Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the <i>XMM </i> -COSMOS survey. Monthly Notices of the Royal Astronomical Society, 2012, 425, 623-640.	1.6	315
3	The X-ray to optical-UV luminosity ratio of X-ray selected type 1 AGN in XMM-COSMOS. Astronomy and Astrophysics, 2010, 512, A34.	2.1	306
4	ON THE COSMIC EVOLUTION OF THE SCALING RELATIONS BETWEEN BLACK HOLES AND THEIR HOST GALAXIES: BROAD-LINE ACTIVE GALACTIC NUCLEI IN THE zCOSMOS SURVEY. Astrophysical Journal, 2010, 708, 137-157.	1.6	276
5	THE <i>XMM-NEWTON</i> WIDE-FIELD SURVEY IN THE COSMOS FIELD (XMM-COSMOS): DEMOGRAPHY AND MULTIWAVELENGTH PROPERTIES OF OBSCURED AND UNOBSCURED LUMINOUS ACTIVE GALACTIC NUCLEI. Astrophysical Journal, 2010, 716, 348-369.	1.6	266
6	The incidence of obscuration in active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2014, 437, 3550-3567.	1.6	245
7	Cosmological constraints from the Hubble diagram of quasars at high redshifts. Nature Astronomy, 2019, 3, 272-277.	4.2	236
8	Accreting supermassive black holes in the COSMOS field and the connection to their host galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 427, 3103-3133.	1.6	202
9	THE <i>CHANDRA</i> COSMOS SURVEY. III. OPTICAL AND INFRARED IDENTIFICATION OF X-RAY POINT SOURCES. Astrophysical Journal, Supplement Series, 2012, 201, 30.	3.0	200
10	The first ultraviolet quasar-stacked spectrum at z $\hat{a}\% f$ 2.4 from WFC3. Monthly Notices of the Royal Astronomical Society, 2015, 449, 4204-4220.	1.6	197
11	THE TIGHT RELATION BETWEEN X-RAY AND ULTRAVIOLET LUMINOSITY OF QUASARS. Astrophysical Journal, 2016, 819, 154.	1.6	167
12	A HUBBLE DIAGRAM FOR QUASARS. Astrophysical Journal, 2015, 815, 33.	1.6	165
13	A statistical relation between the X-ray spectral index and Eddington ratio of active galactic nuclei in deep surveys. Monthly Notices of the Royal Astronomical Society, 2013, 433, 2485-2496.	1.6	155
14	Universal bolometric corrections for active galactic nuclei over seven luminosity decades. Astronomy and Astrophysics, 2020, 636, A73.	2.1	134
15	X-shooter reveals powerful outflows in z $\hat{a}^{1/4}$ 1.5 X-ray selected obscured quasi-stellar objects. Monthly Notices of the Royal Astronomical Society, 2015, 446, 2394-2417.	1.6	128
16	The quest for dual and binary supermassive black holes: A multi-messenger view. New Astronomy Reviews, 2019, 86, 101525.	5.2	119
17	THE OBSCURED FRACTION OF ACTIVE GALACTIC NUCLEI IN THE<1>XMMCOSMOS SURVEY: A SPECTRAL ENERGY DISTRIBUTION PERSPECTIVE. Astrophysical Journal, 2013, 777, 86.	1.6	118
18	QSO MUSEUM I: a sample of 61 extended Ly α-emission nebulae surrounding <i>z</i> àâ^1⁄4 3 quasars. Monthl Notices of the Royal Astronomical Society, 2019, 482, 3162-3205.	ly _{1.6}	106

#	Article	IF	Citations
19	Quasars as standard candles. Astronomy and Astrophysics, 2017, 602, A79.	2.1	102
20	A RUNAWAY BLACK HOLE IN COSMOS: GRAVITATIONAL WAVE OR SLINGSHOT RECOIL?. Astrophysical Journal, 2010, 717, 209-222.	1.6	101
21	Tension with the flat î-CDM model from a high-redshift Hubble diagram of supernovae, quasars, and gamma-ray bursts. Astronomy and Astrophysics, 2019, 628, L4.	2.1	100
22	The mean star-forming properties of QSO host galaxies. Astronomy and Astrophysics, 2013, 560, A72.	2.1	99
23	GOODS- <i>Herschel</i> : ultra-deep <i>XMM-Newton</i> observations reveal AGN/star-formation connection. Astronomy and Astrophysics, 2012, 546, A58.	2.1	94
24	Quasars as standard candles. Astronomy and Astrophysics, 2020, 642, A150.	2.1	92
25	AGNfitter: A BAYESIAN MCMC APPROACH TO FITTING SPECTRAL ENERGY DISTRIBUTIONS OF AGNs. Astrophysical Journal, 2016, 833, 98.	1.6	84
26	Compton thick AGN in the XMM-COSMOS survey. Astronomy and Astrophysics, 2015, 573, A137.	2.1	77
27	Black hole accretion and host galaxies of obscured quasars in XMM-COSMOS. Astronomy and Astrophysics, 2011, 535, A80.	2.1	76
28	Galaxy-wide outflows in $\langle i \rangle z < i \rangle \sim 1.5$ luminous obscured quasars revealed through near-IR slit-resolved spectroscopy. Astronomy and Astrophysics, 2015, 574, A82.	2.1	72
29	Molecular outflow and feedback in the obscured quasar XID2028 revealed by ALMA. Astronomy and Astrophysics, 2018, 612, A29.	2.1	70
30	SPECTRAL ENERGY DISTRIBUTIONS OF TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. I. THE <i>XMM </i> -COSMOS SAMPLE. Astrophysical Journal, 2012, 759, 6.	1.6	67
31	HOT-DUST-POOR TYPE 1 ACTIVE GALACTIC NUCLEI IN THE COSMOS SURVEY. Astrophysical Journal Letters, 2010, 724, L59-L63.	3.0	55
32	The bolometric output and host-galaxy properties of obscured AGN in the XMM-COSMOS survey. Astronomy and Astrophysics, 2011, 534, A110.	2.1	54
33	ACTIVE GALACTIC NUCLEUS X-RAY VARIABILITY IN THE <i>XMM</i> -COSMOS SURVEY. Astrophysical Journal, 2014, 781, 105.	1.6	51
34	Quasars as standard candles II. Astronomy and Astrophysics, 2019, 631, A120.	2.1	46
35	Fundamental differences in the radio properties of red and blue quasars: evolution strongly favoured over orientation. Monthly Notices of the Royal Astronomical Society, 2019, 488, 3109-3128.	1.6	44
36	Multi-wavelength Properties of Type 1 and Type 2 AGN Host Galaxies in the Chandra-COSMOS Legacy Survey. Astrophysical Journal, 2019, 872, 168.	1.6	44

#	Article	IF	Citations
37	The nature of massive black hole binary candidates $\hat{a} \in \mathbb{C}$ I. Spectral properties and evolution. Monthly Notices of the Royal Astronomical Society, 2013, 433, 1492-1504.	1.6	43
38	Evidence for feedback in action from the molecular gas content in the <i>z</i> ~ 1.6 outflowing QSO XID2028. Astronomy and Astrophysics, 2015, 578, A11.	2.1	43
39	MUSE analysis of gas around galaxies (MAGG) $\hat{a}\in$ III. The gas and galaxy environment of $\langle i\rangle z\langle i\rangle = 3\hat{a}\in$ 4.5 quasars. Monthly Notices of the Royal Astronomical Society, 2021, 503, 3044-3064.	1.6	40
40	The MUSE Ultra Deep Field (MUDF). II. Survey design and the gaseous properties of galaxy groups at 0.5 & amp;lt; z & amp;lt; 1.5. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1451-1469.	1.6	38
41	MUSE Analysis of Gas around Galaxies (MAGG) – I: Survey design and the environment of a near pristine gas cloud at <i>z</i> â‰^ 3.5. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2057-2074.	1.6	36
42	FeÂK emission from active galaxies in the COSMOS field. Astronomy and Astrophysics, 2012, 537, A86.	2.1	35
43	Molecular gas content in obscured AGN at $\langle i \rangle z \langle j \rangle$ > 1. Astronomy and Astrophysics, 2018, 619, A90.	2.1	35
44	Cosmography by orthogonalized logarithmic polynomials. Astronomy and Astrophysics, 2021, 649, A65.	2.1	33
45	Type 2 AGN Host Galaxies in the Chandra-COSMOS Legacy Survey: No Evidence of AGN-driven Quenching. Astrophysical Journal, 2017, 841, 102.	1.6	32
46	The most luminous blue quasars at 3.0 < <i>z</i> < 3.3. Astronomy and Astrophysics, 2019, 632, A109.	2.1	32
47	Fundamental differences in the radio properties of red and blue quasars: enhanced compact AGN emission in red quasars. Monthly Notices of the Royal Astronomical Society, 2020, 494, 4802-4818.	1.6	31
48	Is there any evidence that ionized outflows quench star formation in type 1 quasars at <i>z</i> < 1?. Astronomy and Astrophysics, 2016, 585, A148.	2.1	29
49	Cosmological test with the QSO Hubble diagram. International Journal of Modern Physics D, 2016, 25, 1650060.	0.9	25
50	Fundamental differences in the radio properties of red and blue quasars: insight from the LOFAR Two-metre Sky Survey (LoTSS). Monthly Notices of the Royal Astronomical Society, 2020, 494, 3061-3079.	1.6	25
51	Astronomical Distance Determination in the Space Age. Space Science Reviews, 2018, 214, 1.	3.7	24
52	Cosmology with <scp>AGN</scp> : can we use quasars as standard candles?. Astronomische Nachrichten, 2017, 338, 329-333.	0.6	23
53	The <i>Chandra</i> view of the relation between X-ray and UV emission in quasars. Astronomy and Astrophysics, 2021, 655, A109.	2.1	23
54	X-Ray Observations of a [C ii]-bright, zÂ=Â6.59 Quasar/Companion System. Astrophysical Journal, 2020, 900, 189.	1.6	20

#	Article	IF	CITATIONS
55	One-zone models for spheroidal galaxies with a central supermassive black-hole. Astronomy and Astrophysics, 2011, 525, A115.	2.1	19
56	The MUSE Ultra Deep Field (MUDF) – I. Discovery of a group of Lyα nebulae associated with a bright ⟨i>zÂâ‰^Â3.23 quasar pair. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 485, L62-L67.	1.2	18
57	The first broad-band X-ray view of the narrow-line Seyfert 1 Ton S180. Monthly Notices of the Royal Astronomical Society, 2020, 497, 2352-2370.	1.6	17
58	A Radio, Optical, UV, and X-Ray View of the Enigmatic Changing-look Active Galactic Nucleus 1ES 1927+654 from Its Pre- to Postflare States. Astrophysical Journal, 2022, 931, 5.	1.6	17
59	The Spectral and Environment Properties of zÂâ^¼Â2.0–2.5 Quasar Pairs. Astrophysical Journal, 2018, 860, 41.	1.6	16
60	A Hubble Diagram for Quasars. Frontiers in Astronomy and Space Sciences, 2018, 4, .	1.1	16
61	X-Ray Properties of AGN in Brightest Cluster Galaxies. I. A Systematic Study of the Chandra Archive in the 0.2Â<ÂzÂ<Â0.3 and 0.55Â<ÂzÂ<Â0.75 Redshift Range. Astrophysical Journal, 2018, 859, 65.	1.6	15
62	Fundamental differences in the properties of red and blue quasars: measuring the reddening and accretion properties with <i>X-shooter</i> Monthly Notices of the Royal Astronomical Society, 2022, 513, 1254-1274.	1.6	15
63	Quasars as high-redshift standard candles. Astronomy and Astrophysics, 2022, 663, L7.	2.1	15
64	Cosmology With Quasars: Predictions for eROSITA From a Quasar Hubble Diagram. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	10
65	The most luminous blue quasars at 3.0 < <i>z</i> < 3.3. Astronomy and Astrophysics, 2021, 653, A158.	2.1	10
66	Investigating Dark Energy Equation of State With High Redshift Hubble Diagram. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	10
67	The nature of massive black hole binary candidates – II. Spectral energy distribution atlas. Monthly Notices of the Royal Astronomical Society, 2014, 441, 316-332.	1.6	9
68	A MUltiwavelength Study of ELAN Environments (AMUSE ²). Astronomy and Astrophysics, 2022, 658, A77.	2.1	9
69	The Composite Nature of Dust-obscured Galaxies (DOGs) at zÂâ^1⁄4Â2–3 in the COSMOS Field. II. The AGN Fraction. Astronomical Journal, 2019, 157, 233.	1.9	8
70	A Multiwavelength Study of ELAN Environments (AMUSE $<$ sup $>$ 2 $<$ /sup $>$). Mass Budget, Satellites Spin Alignment, and Gas Infall in a Massive z â 1 /4 3 Quasar Host Halo. Astrophysical Journal, 2022, 930, 72.	1.6	8
71	The nonlinear Xâ€ray/ultraviolet relation in active galactic nuclei: Contribution of instrumental effects on the Xâ€ray variability. Astronomische Nachrichten, 2019, 340, 267-272.	0.6	7
72	Towards an informed quest for accretion disc winds in quasars: the intriguing case of Ton 28. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 482, L134-L138.	1.2	6

#	Article	IF	CITATIONS
73	Orientation effects on the near-infrared broad-band emission of quasars. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1405-1411.	1.6	5
74	$EW[\mbox{OIII}]$ as an Orientation Indicator for Quasars: Implications for the Torus. Frontiers in Astronomy and Space Sciences, 2017, 4, .	1.1	4
75	The Physical Relation between Disc and Coronal Emission in Quasars. Frontiers in Astronomy and Space Sciences, 2018, 4, .	1.1	4
76	The role of SPICA-like missions and the Origins Space Telescope in the quest for heavily obscured AGN and synergies with Athena. Publications of the Astronomical Society of Australia, 2021, 38, .	1.3	2
77	Constraining the Size of the Circumgalactic Medium Using the Transverse Autocorrelation Function of C iv Absorbers in Paired Quasar Spectra. Astronomical Journal, 2022, 164, 51.	1.9	2
78	Examining supernova events in Type 1 active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4419-4429.	1.6	1
79	Fitting Spectral Energy Distributions of AGN A Markov Chain Monte Carlo Approach. Proceedings of the International Astronomical Union, 2013, 9, 228-229.	0.0	O
80	Astronomical Distance Determination in the Space Age. Space Sciences Series of ISSI, 2018, , 283-351.	0.0	0
81	Hands-on learning at a world-class telescope. , 0, , .		O