Benoît Stijlemans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7220616/publications.pdf

Version: 2024-02-01

94 papers

4,148 citations

94433 37 h-index 61 g-index

97 all docs 97
docs citations

97 times ranked 5204 citing authors

#	Article	IF	Citations
1	The Road to Personalized Myeloma Medicine: Patient-specific Single-domain Antibodies for Anti-idiotypic Radionuclide Therapy. Molecular Cancer Therapeutics, 2022, 21, 159-169.	4.1	9
2	Targeting the tsetse-trypanosome interplay using genetically engineered Sodalis glossinidius. PLoS Pathogens, 2022, 18, e1010376.	4.7	1
3	The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. Frontiers in Immunology, 2022, 13, 865395.	4.8	3
4	Detrimental Effect of <i>Trypanosoma brucei brucei </i> Infection on Memory B Cells and Host Ability to Recall Protective B-cell Responses. Journal of Infectious Diseases, 2022, 226, 528-540.	4.0	10
5	Immunogenicity Risk Profile of Nanobodies. Frontiers in Immunology, 2021, 12, 632687.	4.8	97
6	Macrophage miR-210 induction and metabolic reprogramming in response to pathogen interaction boost life-threatening inflammation. Science Advances, $2021, 7, \ldots$	10.3	26
7	Macrophages are metabolically heterogeneous within the tumor microenvironment. Cell Reports, 2021, 37, 110171.	6.4	69
8	Identification of Nanobodies against the Acute Myeloid Leukemia Marker CD33. International Journal of Molecular Sciences, 2020, 21, 310.	4.1	18
9	Dehydrin ERD14 activates glutathione transferase Phi9 in Arabidopsis thaliana under osmotic stress. Biochimica Et Biophysica Acta - General Subjects, 2020, 1864, 129506.	2.4	28
10	A Critical Blimp-1-Dependent IL-10 Regulatory Pathway in T Cells Protects From a Lethal Pro-inflammatory Cytokine Storm During Acute Experimental Trypanosoma brucei Infection. Frontiers in Immunology, 2020, 11, 1085.	4.8	12
11	A New Family of Diverse Skin Peptides from the Microhylid Frog Genus Phrynomantis. Molecules, 2020, 25, 912.	3.8	4
12	Development of a recombinase polymerase amplification lateral flow assay for the detection of active Trypanosoma evansi infections. PLoS Neglected Tropical Diseases, 2020, 14, e0008044.	3.0	16
13	Hepatocyte-derived IL-10 plays a crucial role in attenuating pathogenicity during the chronic phase of T. congolense infection. PLoS Pathogens, 2020, 16, e1008170.	4.7	5
14	Title is missing!. , 2020, 14, e0008044.		0
15	Title is missing!. , 2020, 14, e0008044.		O
16	Title is missing!. , 2020, 14, e0008044.		0
17	Title is missing!. , 2020, 14, e0008044.		O
18	Title is missing!. , 2020, 16, e1008170.		0

#	Article	lF	Citations
19	Title is missing!. , 2020, 16, e1008170.		О
20	Title is missing!. , 2020, 16, e1008170.		0
21	Title is missing!. , 2020, 16, e1008170.		0
22	The Trypanosomal Transferrin Receptor of Trypanosoma Brucei—A Review. Tropical Medicine and Infectious Disease, 2019, 4, 126.	2.3	14
23	The anuran skin peptide bradykinin mediates its own absorption across epithelial barriers of the digestive tract. Peptides, 2018, 103, 84-89.	2.4	4
24	Novel halfâ€life extended antiâ€MIF nanobodies protect against endotoxic shock. FASEB Journal, 2018, 32, 3411-3422.	0.5	27
25	Neutrophils enhance early Trypanosoma brucei infection onset. Scientific Reports, 2018, 8, 11203.	3.3	33
26	African Trypanosomiasis-Associated Anemia: The Contribution of the Interplay between Parasites and the Mononuclear Phagocyte System. Frontiers in Immunology, 2018, 9, 218.	4.8	67
27	Molecular Imaging with Kupffer Cell-Targeting Nanobodies for Diagnosis and Prognosis in Mouse Models of Liver Pathogenesis. Molecular Imaging and Biology, 2017, 19, 49-58.	2.6	24
28	Reprint of: The non-mammalian MIF superfamily. Immunobiology, 2017, 222, 858-867.	1.9	12
29	The non-mammalian MIF superfamily. Immunobiology, 2017, 222, 473-482.	1.9	43
30	African Trypanosomes Undermine Humoral Responses and Vaccine Development: Link with Inflammatory Responses?. Frontiers in Immunology, 2017, 8, 582.	4.8	33
31	Nanobodies As Tools to Understand, Diagnose, and Treat African Trypanosomiasis. Frontiers in Immunology, 2017, 8, 724.	4.8	17
32	MIF inhibition interferes with the inflammatory and T cell-stimulatory capacity of NOD macrophages and delays autoimmune diabetes onset. PLoS ONE, 2017, 12, e0187455.	2.5	12
33	Early Immunological Responses Upon Tsetse Fly–Mediated Trypanosome Inoculation. , 2017, , 115-132.		0
34	Immune Evasion Strategies of Trypanosoma brucei within the Mammalian Host: Progression to Pathogenicity. Frontiers in Immunology, 2016, 7, 233.	4.8	72
35	An Anti-proteome Nanobody Library Approach Yields a Specific Immunoassay for Trypanosoma congolense Diagnosis Targeting Glycosomal Aldolase. PLoS Neglected Tropical Diseases, 2016, 10, e0004420.	3.0	30
36	The Possible Role of Staphylococcus epidermidis LPxTG Surface Protein SesC in Biofilm Formation. PLoS ONE, 2016, 11, e0146704.	2.5	22

#	Article	IF	CITATIONS
37	MIF-Mediated Hemodilution Promotes Pathogenic Anemia in Experimental African Trypanosomosis. PLoS Pathogens, 2016, 12, e1005862.	4.7	20
38	M-CSF and GM-CSF Receptor Signaling Differentially Regulate Monocyte Maturation and Macrophage Polarization in the Tumor Microenvironment. Cancer Research, 2016, 76, 35-42.	0.9	184
39	E-cadherin expression in macrophages dampens their inflammatory responsiveness in vitro, but does not modulate M2-regulated pathologies in vivo. Scientific Reports, 2015, 5, 12599.	3.3	29
40	Iron Homeostasis and <i>Trypanosoma brucei </i> Associated Immunopathogenicity Development: A Battle/Quest for Iron. BioMed Research International, 2015, 2015, 1-15.	1.9	26
41	Macrophage dynamics are regulated by local macrophage proliferation and monocyte recruitment in injured pancreas. European Journal of Immunology, 2015, 45, 1482-1493.	2.9	45
42	Development of a pHrodo-Based Assay for the Assessment of In Vitro and In Vivo Erythrophagocytosis during Experimental Trypanosomosis. PLoS Neglected Tropical Diseases, 2015, 9, e0003561.	3.0	34
43	Monitoring liver macrophages using nanobodies targeting Vsig4: Concanavalin A induced acute hepatitis as paradigm. Immunobiology, 2015, 220, 200-209.	1.9	27
44	NK-, NKT- and CD8-Derived IFNÎ ³ Drives Myeloid Cell Activation and Erythrophagocytosis, Resulting in Trypanosomosis-Associated Acute Anemia. PLoS Pathogens, 2015, 11, e1004964.	4.7	56
45	Murine Liver Myeloid Cell Isolation Protocol. Bio-protocol, 2015, 5, .	0.4	9
46	Low Structural Variation in the Host-Defense Peptide Repertoire of the Dwarf Clawed Frog Hymenochirus boettgeri (Pipidae). PLoS ONE, 2014, 9, e86339.	2.5	11
47	Generation of a Nanobody Targeting the Paraflagellar Rod Protein of Trypanosomes. PLoS ONE, 2014, 9, e115893.	2.5	26
48	MIF Contributes to Trypanosoma brucei Associated Immunopathogenicity Development. PLoS Pathogens, 2014, 10, e1004414.	4.7	45
49	Presence and regulation of insulin-regulated aminopeptidase in mouse macrophages. JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2014, 15, 466-479.	1.7	11
50	Antibodyâ€mediated control of <i><scp>T</scp>rypanosoma vivax</i> infection fails in the absence of tumour necrosis factor. Parasite Immunology, 2014, 36, 271-276.	1.5	34
51	Antibacterial activities of coagulase-negative staphylococci from bovine teat apex skin and their inhibitory effect on mastitis-related pathogens. Journal of Applied Microbiology, 2014, 116, 1084-1093.	3.1	43
52	African Trypanosomiasis as Paradigm for Involvement of the Mononuclear Phagocyte System in Pathogenicity During Parasite Infection., 2014,, 349-374.		0
53	A Trypanosoma brucei Kinesin Heavy Chain Promotes Parasite Growth by Triggering Host Arginase Activity. PLoS Pathogens, 2013, 9, e1003731.	4.7	48
54	Origin and Functional Diversification of an Amphibian Defense Peptide Arsenal. PLoS Genetics, 2013, 9, e1003662.	3.5	47

#	Article	IF	CITATIONS
55	Affinity Is an Important Determinant of the Anti-Trypanosome Activity of Nanobodies. PLoS Neglected Tropical Diseases, 2012, 6, e1902.	3.0	15
56	1,25-Dihydroxyvitamin D3 curtails the inflammatory and T cell stimulatory capacity of macrophages through an IL-10-dependent mechanism. Immunobiology, 2012, 217, 1292-1300.	1.9	148
57	Using microdialysis to analyse the passage of monovalent nanobodies through the blood–brain barrier. British Journal of Pharmacology, 2012, 165, 2341-2353.	5.4	42
58	Tsetse Salivary Gland Proteins 1 and 2 Are High Affinity Nucleic Acid Binding Proteins with Residual Nuclease Activity. PLoS ONE, 2012, 7, e47233.	2.5	15
59	Vaccination with SesC Decreases Staphylococcus epidermidis Biofilm Formation. Infection and Immunity, 2012, 80, 3660-3668.	2.2	57
60	Expression and extracellular release of a functional anti-trypanosome Nanobody \hat{A}^{\otimes} in Sodalis glossinidius, a bacterial symbiont of the tsetse fly. Microbial Cell Factories, 2012, 11, 23.	4.0	65
61	ILâ€10 limits production of pathogenic TNF by M1 myeloid cells through induction of nuclear NFâ€Î°B p50 member in <i>Trypanosoma congolense</i> infectionâ€resistant C57BL/6 mice. European Journal of Immunology, 2011, 41, 3270-3280.	2.9	40
62	Similar inflammatory DC maturation signatures induced by TNF or <i>Trypanosoma brucei</i> antigens instruct default Th2â€eell responses. European Journal of Immunology, 2011, 41, 3479-3494.	2.9	37
63	High Affinity Nanobodies against the Trypanosome brucei VSG Are Potent Trypanolytic Agents that Block Endocytosis. PLoS Pathogens, 2011, 7, e1002072.	4.7	58
64	Scrutinizing the mechanisms underlying the induction of anemia of inflammation through GPI-mediated modulation of macrophage activation in a model of African trypanosomiasis. Microbes and Infection, 2010, 12, 389-399.	1.9	30
65	The Central Role of Macrophages in Trypanosomiasis-Associated Anemia:Rationale for Therapeutical Approaches. Endocrine, Metabolic and Immune Disorders - Drug Targets, 2010, 10, 71-82.	1.2	40
66	Tip-DC Development during Parasitic Infection Is Regulated by IL-10 and Requires CCL2/CCR2, IFN- \hat{l}^3 and MyD88 Signaling. PLoS Pathogens, 2010, 6, e1001045.	4.7	124
67	Current status of vaccination against African trypanosomiasis. Parasitology, 2010, 137, 2017-2027.	1.5	46
68	Lack of galectin-3 alleviates trypanosomiasis-associated anemia of inflammation. Immunobiology, 2010, 215, 833-841.	1.9	13
69	Identification of a Parasitic Immunomodulatory Protein Triggering the Development of Suppressive M1 Macrophages during African Trypanosomiasis. Journal of Infectious Diseases, 2009, 200, 1849-1860.	4.0	31
70	Inhibition of <i>Staphylococcus epidermidis</i> Biofilm Formation by Rabbit Polyclonal Antibodies against the SesC Protein. Infection and Immunity, 2009, 77, 3670-3678.	2.2	59
71	Differentiation, activation and function of CD11b+Ly6C+ TNF/iNOS-producing dendritic cells during parasitic infection. Cytokine, 2009, 48, 135.	3.2	0
72	Camelid immunoglobulins and nanobody technology. Veterinary Immunology and Immunopathology, 2009, 128, 178-183.	1.2	424

#	Article	IF	CITATIONS
73	Understanding the role of monocytic cells in liver inflammation using parasite infection as a model. Immunobiology, 2009, 214, 737-747.	1.9	25
74	Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice. Journal of Clinical Investigation, 2009, 119, 1626-1637.	8.2	138
75	Parallel selection of multiple anti-infectome Nanobodies without access to purified antigens. Journal of Immunological Methods, 2008, 329, 138-150.	1.4	61
76	Role of iron homeostasis in trypanosomiasis-associated anemia. Immunobiology, 2008, 213, 823-835.	1.9	67
77	A Glycosylphosphatidylinositol-Based Treatment Alleviates Trypanosomiasis-Associated Immunopathology. Journal of Immunology, 2007, 179, 4003-4014.	0.8	68
78	African trypanosomosis: From immune escape and immunopathology to immune intervention. Veterinary Parasitology, 2007, 148, 3-13.	1.8	57
79	Experimental therapy of African trypanosomiasis with a nanobody-conjugated human trypanolytic factor. Nature Medicine, 2006, 12, 580-584.	30.7	140
80	Evidence for proteins involved in prophenoloxidase cascade Eisenia fetida earthworms. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2006, 176, 581-587.	1.5	23
81	Tsetse Fly Saliva Accelerates the Onset of Trypanosoma brucei Infection in a Mouse Model Associated with a Reduced Host Inflammatory Response. Infection and Immunity, 2006, 74, 6324-6330.	2.2	58
82	The Induction of a Type 1 Immune Response following a <i>Trypanosoma brucei</i> Infection Is MyD88 Dependent. Journal of Immunology, 2005, 175, 2501-2509.	0.8	131
83	Antigen Binding and Solubility Effects upon the Veneering of a Camel VHH in Framework-2 to Mimic a VH. Journal of Molecular Biology, 2005, 350, 112-125.	4.2	90
84	P75 Tumor Necrosis Factor–Receptor Shedding Occurs as a Protective Host Response during African Trypanosomiasis. Journal of Infectious Diseases, 2004, 189, 527-539.	4.0	66
85	Efficient Targeting of Conserved Cryptic Epitopes of Infectious Agents by Single Domain Antibodies. Journal of Biological Chemistry, 2004, 279, 1256-1261.	3.4	238
86	Bacterial Lipoprotein-Based Vaccines Induce Tumor Necrosis Factor-Dependent Type 1 Protective Immunity against Leishmania major. Infection and Immunity, 2002, 70, 240-248.	2.2	35
87	Control of Experimental Trypanosoma brucei Infections Occurs Independently of Lymphotoxin-α Induction. Infection and Immunity, 2002, 70, 1342-1351.	2.2	33
88	VSG-GPI anchors of African trypanosomes: their role in macrophage activation and induction of infection-associated immunopathology. Microbes and Infection, 2002, 4, 999-1006.	1.9	67
89	A Conserved Flagellar Pocket Exposed High Mannose Moiety Is Used by African Trypanosomes as a Host Cytokine Binding Molecule. Journal of Biological Chemistry, 2001, 276, 33458-33464.	3.4	22
90	Distinct Carbohydrate Recognition Domains of an Invertebrate Defense Molecule Recognize Gram-negative and Gram-positive Bacteria. Journal of Biological Chemistry, 2001, 276, 45840-45847.	3.4	71

#	Article	IF	CITATION
91	Attenuation of Trypanosoma bruceils Associated with Reduced Immunosuppression and Concomitant Production of Th2 Lymphokines. Journal of Infectious Diseases, 2000, 181, 1110-1120.	4.0	57
92	Comparative Analysis of Antibody Responses against HSP60, Invariant Surface Glycoprotein 70, and Variant Surface Glycoprotein Reveals a Complex Antigen-Specific Pattern of Immunoglobulin Isotype Switching during Infection by Trypanosoma brucei. Infection and Immunity, 2000, 68, 848-860.	2.2	46
93	Detection of clinically relevant antibodies pretransplant and posttransplant with PRA-STAT. Transplantation Proceedings, 1997, 29, 330-332.	0.6	4
94	Characterization of central macrophages in Anemia of Inflammation (AI): African trypanosomiasis as a model system. Frontiers in Immunology, 0, 4, .	4.8	0