Hiromi Okamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7220576/publications.pdf Version: 2024-02-01

HIROMI OKAMOTO

#	Article	IF	CITATIONS
1	Near-Field Two-Photon-Induced Photoluminescence from Single Gold Nanorods and Imaging of Plasmon Modes. Journal of Physical Chemistry B, 2005, 109, 13214-13220.	1.2	332
2	Visualization of Localized Intense Optical Fields in Single Goldâ^'Nanoparticle Assemblies and Ultrasensitive Raman Active Sites. Nano Letters, 2006, 6, 2173-2176.	4.5	230
3	Plasmon Mode Imaging of Single Gold Nanorods. Journal of the American Chemical Society, 2004, 126, 12730-12731.	6.6	228
4	Nonlinear optical effects in trapping nanoparticles with femtosecond pulses. Nature Physics, 2010, 6, 1005-1009.	6.5	159
5	Near-field optical imaging of plasmon modes in gold nanorods. Journal of Chemical Physics, 2005, 122, 154701.	1.2	154
6	Imaging of Surface Plasmon and Ultrafast Dynamics in Gold Nanorods by Near-Field Microscopy. Journal of Physical Chemistry B, 2004, 108, 16344-16347.	1.2	103
7	Multidimensional nanoscopic chiroptics. Nature Reviews Physics, 2022, 4, 113-124.	11.9	87
8	Photoluminescence from gold nanoplates induced by near-field two-photon absorption. Applied Physics Letters, 2006, 88, 023104.	1.5	76
9	Bioimaging with Twoâ€Photonâ€Induced Luminescence from Triangular Nanoplates and Nanoparticle Aggregates of Gold. Advanced Materials, 2009, 21, 2309-2313.	11.1	67
10	Near-field optical imaging of enhanced electric fields and plasmon waves in metal nanostructures. Progress in Surface Science, 2009, 84, 199-229.	3.8	66
11	Near-field imaging of optical field and plasmon wavefunctions in metal nanoparticles. Journal of Materials Chemistry, 2006, 16, 3920.	6.7	62
12	Strong Nanoscale Optical Activity Localized in Two-Dimensional Chiral Metal Nanostructures. Journal of Physical Chemistry C, 2013, 117, 23964-23969.	1.5	62
13	Properties of Photoluminescence from Single Gold Nanorods Induced by Near-Field Two-Photon Excitation. Journal of Physical Chemistry C, 2009, 113, 11756-11759.	1.5	60
14	Local Optical Activity in Achiral Two-Dimensional Gold Nanostructures. Journal of Physical Chemistry C, 2014, 118, 22229-22233.	1.5	56
15	Circular dichroism nano-imaging of two-dimensional chiral metal nanostructures. Physical Chemistry Chemical Physics, 2013, 15, 13805.	1.3	55
16	Circular Dichroism Microscopy Free from Commingling Linear Dichroism via Discretely Modulated Circular Polarization. Scientific Reports, 2016, 6, 35731.	1.6	55
17	Femtosecond time-resolved coherent Raman scattering under various polarization and resonance conditions. Journal of the Optical Society of America B: Optical Physics, 1990, 7, 1702.	0.9	53
18	Infrared and Raman spectra of 4-(dimethylamino)benzonitrile and isotopomers in the ground state and vibrational analysis. Chemical Physics, 2000, 260, 193-214.	0.9	52

#	Article	IF	CITATIONS
19	Femtosecond time-resolved coherent Raman scattering from β-carotene in solution. Ultrahigh frequency (11 THz) beating phenomenon and sub-picosecond vibrational relaxation. Chemical Physics Letters, 1991, 177, 568-572.	1.2	50
20	Characteristic near-field spectra of single gold nanoparticles. Chemical Physics Letters, 2004, 400, 500-505.	1.2	49
21	Dye fluorescence enhancement and quenching by gold nanoparticles: Direct near-field microscopic observation of shape dependence. Chemical Physics Letters, 2008, 467, 105-109.	1.2	49
22	Vibrational Relaxation Dynamics of trans-Stilbene in the Lowest Excited Singlet State. Pump and Probe Wavelength Dependencies of the Picosecond Time-Resolved Anti-Stokes Raman Spectrum. Journal of Physical Chemistry A, 1998, 102, 9686-9695.	1.1	48
23	Near-field Imaging of Surface-enhanced Raman Active Sites in Aggregated Gold Nanoparticles. Chemistry Letters, 2006, 35, 78-79.	0.7	47
24	Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy. Chemical Physics Letters, 2005, 412, 41-45.	1.2	45
25	Visualizing the Optical Field Structures in Metal Nanostructures. Journal of Physical Chemistry Letters, 2013, 4, 2230-2241.	2.1	45
26	Transient Raman spectra of the all-trans and 7-, 9-, 11- and 13-mono-cis isomers of retinal and the mechanism of the cis-trans isomerization in the lowest excited triplet state. Chemical Physics Letters, 1984, 107, 355-359.	1.2	44
27	Picosecond Transient Infrared Spectrum of 4-(Dimethylamino)benzonitrile in the Fingerprint Region. Journal of Physical Chemistry A, 2000, 104, 4182-4187.	1.1	44
28	Probe-Wavelength Dependence of Picosecond Time-Resolved Anti-Stokes Raman Spectrum of Canthaxanthin:A Determination of Energy States of Vibrationally Excited Molecules Generated via Internal Conversion from the Lowest Excited Singlet State. Journal of Physical Chemistry A, 1997, 101, 3494-3500.	1.1	43
29	Picosecond Infrared Spectra of Isotope-Substituted 4-(Dimethylamino)benzonitriles and Molecular Structure of the Charge-Transfer Singlet Excited State. Journal of Physical Chemistry A, 2001, 105, 4182-4188.	1.1	43
30	Nanoscopic Study on Developing Optical Activity with Increasing Chirality for Two-Dimensional Metal Nanostructures. ACS Photonics, 2014, 1, 732-738.	3.2	43
31	Imaging Chirality of Optical Fields near Achiral Metal Nanostructures Excited with Linearly Polarized Light. ACS Photonics, 2018, 5, 1486-1492.	3.2	43
32	Supramolecular Chirality Synchronization in Thin Films of Plasmonic Nanocomposites. ACS Nano, 2020, 14, 12918-12928.	7.3	43
33	Resonance Raman spectra and excitation profiles of tetradesmethyl-β-Carotene. Journal of Raman Spectroscopy, 1984, 15, 331-335.	1.2	42
34	Near-Field Study on Correlation of Localized Electric Field and Nanostructures in Monolayer Assembly of Gold Nanoparticles. Journal of Physical Chemistry C, 2008, 112, 4033-4035.	1.5	42
35	Near-Field Raman Imaging and Electromagnetic Field Confinement in the Self-Assembled Monolayer Array of Gold Nanoparticles. Langmuir, 2008, 24, 9241-9244.	1.6	41
36	Development of Novel Near-Field Microspectroscopy and Imaging of Local Excitations and Wave Functions of Nanomaterials. Bulletin of the Chemical Society of Japan, 2008, 81, 659-675.	2.0	38

#	Article	IF	CITATIONS
37	Plasmon Dephasing in Single Gold Nanorods Observed By Ultrafast Time-Resolved Near-Field Optical Microscopy. Journal of Physical Chemistry C, 2015, 119, 16215-16222.	1.5	38
38	Resonance raman excitation profiles of trans-azobenzene: contribution of a symmetry-forbidden electronic transition to Raman intensities. Chemical Physics Letters, 1986, 130, 185-189.	1.2	37
39	Time-resolved scanning near-field optical microscopy with supercontinuum light pulses generated in microstructure fiber. Review of Scientific Instruments, 2004, 75, 4528-4533.	0.6	36
40	Reciprocity in scanning near-field optical microscopy: illumination and collection modes of transmission measurements. Optics Letters, 2006, 31, 1474.	1.7	36
41	Spectral inhomogeneities and spatially resolved dynamics in porphyrin J-aggregate studied in the near-field. Chemical Physics Letters, 2003, 381, 368-375.	1.2	35
42	Plasmon modes in single gold nanodiscs. Optics Express, 2014, 22, 12189.	1.7	35
43	Circularly Polarized Photoluminescence from Achiral Dye Molecules Induced by Plasmonic Two-Dimensional Chiral Nanostructures. Journal of Physical Chemistry C, 2018, 122, 24924-24932.	1.5	35
44	Analysis of Anti-Stokes Resonance Raman Excitation Profiles as a Method for Studying Vibrationally Excited Molecules. Journal of Physical Chemistry A, 1997, 101, 3488-3493.	1.1	34
45	Picosecond transient infrared spectroscopy of electronically excited 4-dimethylamino-4′-nitrostilbene in the fingerprint region (1640-940 cmâ~1). Chemical Physics Letters, 1996, 256, 502-508.	1.2	33
46	Anomalous Light Transmission from Plasmonic-Capped Nanoapertures. Nano Letters, 2011, 11, 960-965.	4.5	32
47	Roles of Superchirality and Interference in Chiral Plasmonic Biodetection. Journal of Physical Chemistry C, 2019, 123, 15195-15203.	1.5	32
48	Assignment and anharmonicity analysis of overtone and combination bands observed in the resonance Raman spectra of carotenoids. Spectrochimica Acta Part A: Molecular Spectroscopy, 1994, 50, 1467-1473.	0.1	31
49	Probe-Wavelength Dependency of Picosecond Anti-Stokes Raman Spectra of trans-Stilbene in the S1 State. Journal of Physical Chemistry A, 1997, 101, 7189-7193.	1.1	31
50	Nanoscale chiral surface relief of azo-polymers with nearfield OAM light. Optics Express, 2018, 26, 22197.	1.7	28
51	Femtosecond time-resolved coherent anti-Stokes Raman scattering from acetonitrile: solvent effects on the vibrational dephasing of the Cî—¼N stretching band. Chemical Physics Letters, 1991, 185, 56-60.	1.2	27
52	Femtosecond time-resolved polarized coherent anti-Stokes Raman studies on reorientational relaxation in benzonitrile. Chemical Physics Letters, 1993, 202, 161-166.	1.2	27
53	Local optical activity of nano- to microscale materials and plasmons. Journal of Materials Chemistry C, 2019, 7, 14771-14787.	2.7	27
54	Observation of Plasmon Wave Packet Motions via Femtosecond Time-Resolved Near-Field Imaging Techniques. Nano Letters, 2015, 15, 7657-7665.	4.5	26

НІКОМІ ОКАМОТО

#	Article	IF	CITATIONS
55	Chiral Bioinspired Plasmonics: A Paradigm Shift for Optical Activity and Photochemistry. ACS Photonics, 2022, 9, 2219-2236.	3.2	26
56	Picosecond Infrared Spectrum of 4-(Pyrrol-1-yl)benzonitrile:  Structure of the Excited Charge-Transfer States of Donorâ^'Acceptor Systems. Journal of Physical Chemistry A, 2002, 106, 3485-3490.	1.1	25
57	Solvation dynamics and vibrational relaxation in resonance Raman and fluorescence lineshapes of tetradesmethyl- $\hat{1}^2$ -carotene. Chemical Physics Letters, 1987, 134, 87-95.	1.2	24
58	Resonance Raman studies on tetradesmethyl-β-carotene aggregates. Journal of Raman Spectroscopy, 1989, 20, 751-756.	1.2	22
59	Raman and nearâ€field spectroscopic study on localized surface plasmon excitation from the 2D nanostructure of gold nanoparticles. Journal of Microscopy, 2008, 229, 327-330.	0.8	22
60	Picosecond Infrared Spectroscopy of Electronically Excitedtrans-Stilbene in Solution in the Fingerprint Region. Journal of Physical Chemistry A, 1999, 103, 5852-5857.	1.1	21
61	Picosecond transient infrared spectra and structure of S1 diphenylacetylene in solution. Chemical Physics Letters, 2000, 325, 212-218.	1.2	21
62	Local optical responses of plasmon resonances visualised by near-field optical imaging. Physical Chemistry Chemical Physics, 2015, 17, 6192-6206.	1.3	20
63	Super-Resolution Trapping: A Nanoparticle Manipulation Using Nonlinear Optical Response. ACS Photonics, 2018, 5, 318-323.	3.2	20
64	Sub-picosecond excited-state dynamics of a carotenoid (spirilloxanthin) in the light-harvesting systems of Chromatium vinosum Chemical Physics, 1998, 236, 309-318.	0.9	19
65	Ultrafast photoinduced changes of eigenfunctions of localized plasmon modes in gold nanorods. Physical Review B, 2008, 77, .	1.1	19
66	Spatial distribution of enhanced optical fields in one-dimensional linear arrays of gold nanoparticles studied by scanning near-field optical microscopy. Physical Chemistry Chemical Physics, 2013, 15, 4265-4269.	1.3	18
67	Synthesis of Chiral Labtb and Visualization of Its Enantiomeric Excess by Induced Circular Dichroism Imaging. Chemistry - A European Journal, 2019, 25, 6698-6702.	1.7	18
68	Generation of ultrashort light pulses in the mid-infrared (3000â^'800 cmâ^'1) by four-wave mixing. Optics Communications, 1995, 121, 63-68.	1.0	17
69	High-sensitivity measurement of ultrafast transient infrared spectra based on optically heterodyned detection of absorption anisotropy. Chemical Physics Letters, 1998, 283, 33-38.	1.2	17
70	Near-Field Optical Imaging of Nanoscale Optical Fields and Plasmon Waves. Japanese Journal of Applied Physics, 2008, 47, 6055.	0.8	17
71	Active Control of Chiral Optical near Fields on a Single Metal Nanorod. ACS Photonics, 2019, 6, 677-683.	3.2	16
72	Femtosecond vibrational dephasing of the Cî—¼N stretching in alkanenitriles with long alkyl chains. Dependence on the chain length and hydrogen bonding. Chemical Physics Letters, 1993, 206, 388-392.	1.2	15

#	Article	IF	CITATIONS
73	Picosecond transient Raman spectra of photoexcited 4-dimethylamino-4′-nitrostilbene in polar solvents. Journal of Raman Spectroscopy, 1995, 26, 841-845.	1.2	15
74	Morphological and Spectroscopic Properties of Thin Films of Self-Assembling Amphiphilic Porphyrins on a Hydrophilic Surface as Revealed by Scanning Near-Field Optical Microscopy. Journal of Physical Chemistry B, 2005, 109, 19839-19844.	1.2	12
75	Observation of the dephasing of the C.tplbond.N stretching vibration in liquid nitriles by femtosecond time-resolved coherent anti-Stokes Raman scattering. The Journal of Physical Chemistry, 1992, 96, 8385-8390.	2.9	11
76	Ultrafast population relaxation by time-resolved degenerate four-wave mixing with incoherent light and analysis under breakdown of the two-level approximation. Journal of the Optical Society of America B: Optical Physics, 1993, 10, 2353.	0.9	11
77	Picosecond Infrared Spectra and Structure of Locally Excited and Charge Transfer Excited States of Isotope-Labeled 4-(Dimethylamino)benzonitriles. Bulletin of the Chemical Society of Japan, 2002, 75, 957-963.	2.0	11
78	Confined Optical Fields in Nanovoid Chain Structures Directly Visualized by Near-Field Optical Imaging. Journal of Physical Chemistry C, 2011, 115, 1548-1555.	1.5	11
79	Sub-20-fs Time-Resolved Measurements in an Apertured Near-Field Optical Microscope Combined with a Pulse-Shaping Technique. Applied Physics Express, 2012, 5, 062002.	1.1	11
80	Near-Field Nonlinear CD Imaging of Single Gold Nanostructures. Journal of Physical Chemistry C, 2016, 120, 28157-28162.	1.5	11
81	Directional Supramolecular Polymerization in a Dynamic Microsolution: A Linearly Moving Polymer's End Striking Monomers. Journal of the American Chemical Society, 2021, 143, 8731-8746.	6.6	11
82	Femtosecond time-resolved coherent anti-Stokes Raman scattering from carotenoids in vivo and in vitro: comparison of vibrational relaxation times (T2) of the in-phase Cî—»C stretching bands. Chemical Physics Letters, 1991, 182, 96-100.	1.2	10
83	Femtosecond time-resolved coherent anti-Stokes Raman scattering of the C.tplbond.C stretching in liquid alkynes. The Journal of Physical Chemistry, 1993, 97, 7815-7819.	2.9	10
84	Incoherent time-resolved pump-probe Raman spectroscopy. The Journal of Physical Chemistry, 1993, 97, 9871-9873.	2.9	10
85	Transient vibrational temperatures estimated from anti-Stokes and Stokes Raman intensities and vibrational cooling of electronically excitedtrans-stilbene in solution. Journal of Raman Spectroscopy, 2000, 31, 305-309.	1.2	10
86	Two-photon imaging of localized optical fields in the vicinity of silver nanowires using a scanning near-field optical microscope. Physical Chemistry Chemical Physics, 2009, 11, 5876.	1.3	10
87	Spatial distribution of enhanced optical fields in monolayered assemblies of metal nanoparticles: Effects of interparticle coupling. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 154-159.	2.0	10
88	Interstitial-Dependent Enhanced Photoluminescence: A Near-Field Microscopy on Single Spheroid to Dimer, Tetramer, and Few Particles Gold Nanoassembly. Journal of Physical Chemistry C, 2017, 121, 2344-2354.	1.5	10
89	A Topography-Metrology Correlation in Nanoscale Probed by Near-Field Scanning Optical Microscopy. Plasmonics, 2015, 10, 447-454.	1.8	9
90	TRANSIENT RAMAN SPECTRA OF ALL-TRANS- AND 9-CIS-RETINAL IN THE EXCITED TRIPLET STATE. Chemistry Letters, 1984, 13, 549-550.	0.7	8

#	Article	IF	CITATIONS
91	Observation of Picosecond Transient Raman Spectra by Asynchronous Fourier Transform Raman Spectroscopy. Applied Spectroscopy, 1998, 52, 76-81.	1.2	8
92	Near-field spectroscopic properties of complementary gold nanostructures: applicability of Babinet's principle in the optical region. Optics Express, 2017, 25, 5279.	1.7	8
93	Picosecond Transient Infrared Spectrum of Electronically Excited trans-Stilbene in Acetonitrile and Excited Molecular Structure. Chemistry Letters, 1998, 27, 1141-1142.	0.7	7
94	Structure of the S1 state of diphenylacetylene as studied by time-resolved CARS and infrared spectroscopy. Journal of Molecular Structure, 2005, 735-736, 197-202.	1.8	7
95	Plasmon-induced local photocurrent changes in GaAs photovoltaic cells modified with gold nanospheres: A near-field imaging study. Journal of Applied Physics, 2011, 110, 104306.	1.1	7
96	Linear Momentum of a Microfluid Realizes an Anisotropic Reaction at the Ends of a Supramolecular Nanofiber. Bulletin of the Chemical Society of Japan, 2021, 94, 579-589.	2.0	7
97	Theoretical study on polarized time-resolved resonance coherent anti-Stokes Raman scattering: effects of ultrafast molecular rearrangement in the electronically excited state. Chemical Physics Letters, 1990, 172, 323-329.	1.2	6
98	New feedback mechanism for reducing timing jitter between pulses from two synchronously pumped modeâ€locked lasers. Review of Scientific Instruments, 1995, 66, 5165-5168.	0.6	6
99	Strong optical coupling between mutually orthogonal plasmon oscillations in a silver nanosphere–nanowire joined system. Physical Chemistry Chemical Physics, 2013, 15, 4146-4153.	1.3	6
100	Optical studies of single metal nanoparticles. Physical Chemistry Chemical Physics, 2013, 15, 4090.	1.3	6
101	Optical manipulation with nanoscale chiral fields and related photochemical phenomena. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2022, 52, 100531.	5.6	6
102	Origin of subpicosecond decay components revealed in time-profiles of coherent anti-Stokes Raman scattering from neat benzene. Chemical Physics Letters, 1992, 196, 44-50.	1.2	5
103	Time-resolved pump-probe Raman spectroscopy with temporally incoherent light. Journal of Raman Spectroscopy, 1994, 25, 631-639.	1.2	5
104	Nanoscale Two-Photon Induced Polymerization of Diacetylene Langmuirâ^'Blodgett Film by Near-Field Photoirradiation. Journal of Physical Chemistry C, 2011, 115, 6190-6194.	1.5	5
105	Optical Field Imaging of Elongated Rectangular Nanovoids in Gold Thin Film. Journal of Physical Chemistry C, 2013, 117, 2449-2454.	1.5	5
106	Nanooptical Studies on Physical and Chemical Characteristics of Noble Metal Nanostructures. Bulletin of the Chemical Society of Japan, 2013, 86, 397-413.	2.0	5
107	Optical Activity Governed by Local Chiral Structures in Twoâ€Đimensional Curved Metallic Nanostructures. Chirality, 2016, 28, 540-544.	1.3	5
108	Perturbation theoretical study of resonance Raman intensities: Contribution of forbidden electronic states. Journal of Raman Spectroscopy, 1988, 19, 255-259.	1.2	4

НІКОМІ ОКАМОТО

#	Article	IF	CITATIONS
109	Plasmon Wavefunction Imaging and Dynamic Near-Field Optical Microscopy of Noble Metal Nanoparticles. Journal of the Spectroscopical Society of Japan, 2006, 55, 161-172.	0.0	4
110	Effects of homogeneous and inhomogeneous broadening mechanisms and molecular rearrangement dynamics on frequency resolved and time resolved coherent Raman intensities. Chemical Physics, 1991, 155, 291-307.	0.9	3
111	Near-Field Scanning Optical Microscopy: Single Channel Imaging of Selected Gold Nanoparticles through Two Photon Induced Photoluminescence. Advanced Materials Research, 2014, 938, 118-122.	0.3	3
112	Circularly polarized two-photon-induced luminescence from plasmonic two-dimensional chiral Au nanostructures. Journal of Physics: Conference Series, 2019, 1220, 012004.	0.3	3
113	Picosecond Anti-Stokes Raman Excitation Profiles as a Method for Investigating Vibrationally Excited Transients. Laser Chemistry, 1999, 19, 335-341.	0.5	2
114	Picosecond Transient Infrared Spectroscopy of 4-Dimethylamino- 4′-Nitrostilbene in the Fingerprint Region. Laser Chemistry, 1999, 19, 363-366.	0.5	2
115	Pump- And Probe-Wavelength Dependencies of Picosecond Anti-Stokes Raman Spectrum of Trans-Stilbene in the S ₁ State. Laser Chemistry, 1999, 19, 75-78.	0.5	2
116	FDTD Simulated Observation of a Gold Nanorod by Scanning Near-Field Optical Microscopy. Plasma and Fusion Research, 2010, 5, S2110-S2110.	0.3	2
117	Near-Field Optical Imaging of Wavefunctions and Optical Fields in Plasmonic Nanostructures. , 2011, , 127-160.		2
118	Scientific Contributions of Mitsuo Tasumi. Journal of Physical Chemistry A, 2002, 106, 3253-3254.	1.1	1
119	Pump-probe near-field optical microscopy of molecular aggregates using supercontinuum. Springer Series in Chemical Physics, 2005, , 434-436.	0.2	1
120	NEAR-FIELD IMAGING OF OPTICAL-FIELD STRUCTURES AND PLASMON WAVE FUNCTIONS IN METAL NANOSTRUCTURES. Advances in Multi-photon Processes and Spectroscopy, 2011, , 175-209.	0.6	1
121	Imaging of Plasmons in Gold Nano-Particles by Dynamic Near-Field Spectroscopy. The Review of Laser Engineering, 2006, 34, 224-229.	0.0	1
122	Femtosecond time-resolved coherent Raman scattering under various polarization and resonance conditions: errata. Journal of the Optical Society of America B: Optical Physics, 1991, 8, 708.	0.9	0
123	Imaging of optical field distributions and plasmon wavefunctions in metal nanoparticles. , 2007, , .		0
124	Ultrafast near-field microscopy of single gold nanoparticles. , 2007, , .		0
125	Imaging of Plasmon Wavefunctions in Noble Metal Nanoparticles by Near-field Optical Microscopy. Hyomen Kagaku, 2008, 29, 336-343.	0.0	0
126	Near-Field Optical Microscopy of Plasmonic Nanostructures. , 2013, , 527-562.		0

Near-Field Optical Microscopy of Plasmonic Nanostructures. , 2013, , 527-562. 126

#	Article	IF	CITATIONS
127	Generation of chiral optical near-fields with non-chiral metallic nanostructures and linearly polarized light. , 2017, , .		0
128	Spectral properties of chiral electromagnetic near fields created by chiral plasmonic nanostructures. Journal of Physics: Conference Series, 2019, 1220, 012050.	0.3	0
129	Circular Dichroism Spectroscopic Imaging for Chiral Materials. Seibutsu Butsuri, 2019, 59, 035-038.	0.0	0
130	Conventional and Unconventional View of Chiro-Optical Effects (Optical Activity). Molecular Science, 2021, 15, A0119.	0.2	0
131	Chemical and Mechanical Dissymmetries in Chiral Plasmonic Interactions. , 2021, , .		0
132	Near-Field Optical Microscopy of Localized Surface Plasmons Excited in Noble Metal Nanostructures. The Review of Laser Engineering, 2012, 40, 571.	0.0	0
133	Nonlinear Resonant Optical Trapping. The Review of Laser Engineering, 2014, 42, 776.	0.0	0
134	Circular Dichroism Microscopy to Explore Local Chiroptical Properties. , 2018, , .		0
135	Circular polarization dissymmetry of two-photon-induced photoluminescence from chiral plasmonic nanostructured metasurfaces. , 2018, , .		0
136	Active polarization control of optical fields localized on gold nano-rectangles. , 2018, , .		0
137	Optical gradient force on Chiral nanoparticles. , 2020, , .		0