
Michael Gill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7220049/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease. Nature Genetics, 2009, 41, 1088-1093.	21.4	2,697
2	Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 2014, 515, 209-215.	27.8	2,254
3	Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nature Genetics, 2013, 45, 984-994.	21.4	2,067
4	Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 2010, 466, 368-372.	27.8	1,803
5	Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer's disease. Nature Genetics, 2011, 43, 429-435.	21.4	1,708
6	Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 2013, 45, 1150-1159.	21.4	1,395
7	Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nature Genetics, 2008, 40, 1056-1058.	21.4	1,102
8	Identification of loci associated with schizophrenia by genome-wide association and follow-up. Nature Genetics, 2008, 40, 1053-1055.	21.4	977
9	Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders. American Journal of Human Genetics, 2014, 94, 677-694.	6.2	819
10	Recurrent Rearrangements of Chromosome 1q21.1 and Variable Pediatric Phenotypes. New England Journal of Medicine, 2008, 359, 1685-1699.	27.0	663
11	Microduplications of 16p11.2 are associated with schizophrenia. Nature Genetics, 2009, 41, 1223-1227.	21.4	646
12	Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 2012, 44, 552-561.	21.4	594
13	A genome-wide scan for common alleles affecting risk for autism. Human Molecular Genetics, 2010, 19, 4072-4082.	2.9	538
14	Meta-Analysis of Genome-Wide Association Studies of Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2010, 49, 884-897.	0.5	423
15	Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part III: Bipolar Disorder. American Journal of Human Genetics, 2003, 73, 49-62.	6.2	400
16	Common polygenic variation enhances risk prediction for Alzheimer's disease. Brain, 2015, 138, 3673-3684.	7.6	359
17	Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease. PLoS ONE, 2010, 5, e13950.	2.5	347
18	Genomeâ€wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1345-1354.	1.7	335

#	Article	IF	CITATIONS
19	Individual common variants exert weak effects on the risk for autism spectrum disorders. Human Molecular Genetics, 2012, 21, 4781-4792.	2.9	334
20	Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature, 2011, 471, 499-503.	27.8	296
21	High Frequencies of De Novo CNVs in Bipolar Disorder and Schizophrenia. Neuron, 2011, 72, 951-963.	8.1	290
22	Emotional lability in children and adolescents with attention deficit/hyperactivity disorder (ADHD): clinical correlates and familial prevalence. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2010, 51, 915-923.	5.2	279
23	Evidence for novel susceptibility genes for late-onset Alzheimer's disease from a genome-wide association study of putative functional variants. Human Molecular Genetics, 2007, 16, 865-873.	2.9	256
24	Genome-Wide Analysis of Copy Number Variants in Attention Deficit Hyperactivity Disorder: The Role of Rare Variants and Duplications at 15q13.3. American Journal of Psychiatry, 2012, 169, 195-204.	7.2	242
25	Response variability in Attention Deficit Hyperactivity Disorder: Evidence for neuropsychological heterogeneity. Neuropsychologia, 2007, 45, 630-638.	1.6	231
26	Genomeâ€wide association scan of attention deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1337-1344.	1.7	228
27	Dissociation in performance of children with ADHD and high-functioning autism on a task of sustained attention. Neuropsychologia, 2007, 45, 2234-2245.	1.6	220
28	Combined Analysis from Eleven Linkage Studies of Bipolar Disorder Provides Strong Evidence of Susceptibility Loci on Chromosomes 6q and 8q. American Journal of Human Genetics, 2005, 77, 582-595.	6.2	218
29	A combined analysis of D22S278 marker alleles in affected sib-pairs: Support for a susceptibility locus for schizophrenia at chromosome 22q12. , 1996, 67, 40-45.		205
30	Autism symptoms in Attention-Deficit/Hyperactivity Disorder: A Familial trait which Correlates with Conduct, Oppositional Defiant, Language and Motor Disorders. Journal of Autism and Developmental Disorders, 2009, 39, 197-209.	2.7	189
31	Dissecting the attention deficit hyperactivity disorder (ADHD) phenotype: Sustained attention, response variability and spatial attentional asymmetries in relation to dopamine transporter (DAT1) genotype. Neuropsychologia, 2005, 43, 1847-1857.	1.6	188
32	A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. Human Genetics, 2012, 131, 565-579.	3.8	180
33	Genomewide Linkage Scan in Schizoaffective Disorder. Archives of General Psychiatry, 2005, 62, 1081.	12.3	177
34	Investigating the Contribution of Common Genetic Variants to the Risk and Pathogenesis of ADHD. American Journal of Psychiatry, 2012, 169, 186-194.	7.2	174
35	Delay and reward choice in ADHD: An experimental test of the role of delay aversion Neuropsychology, 2009, 23, 367-380.	1.3	173
36	Convergent genetic and expression data implicate immunity in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 658-671.	0.8	173

#	Article	IF	CITATIONS
37	Joint Analysis of the DRD5 Marker Concludes Association with Attention-Deficit/Hyperactivity Disorder Confined to the Predominantly Inattentive and Combined Subtypes. American Journal of Human Genetics, 2004, 74, 348-356.	6.2	168
38	Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2006, 141B, 96-101.	1.7	162
39	Detecting subtle facial emotion recognition deficits in high-functioning Autism using dynamic stimuli of varying intensities. Neuropsychologia, 2010, 48, 2777-2781.	1.6	161
40	Metaâ€analysis of genomeâ€wide linkage scans of attention deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1392-1398.	1.7	160
41	Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease. PLoS ONE, 2014, 9, e94661.	2.5	155
42	Separation of Cognitive Impairments in Attention-Deficit/Hyperactivity Disorder Into 2 Familial Factors. Archives of General Psychiatry, 2010, 67, 1159.	12.3	150
43	Case-Control Genome-Wide Association Study of Attention-Deficit/Hyperactivity Disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 2010, 49, 906-920.	0.5	150
44	Dementia in people with Down's syndrome. International Journal of Geriatric Psychiatry, 2001, 16, 1168-1174.	2.7	149
45	Dopaminergic System Genes in ADHD Toward a Biological Hypothesis. Neuropsychopharmacology, 2002, 27, 607-19.	5.4	147
46	The influence of serotonin- and other genes on impulsive behavioral aggression and cognitive impulsivity in children with attention-deficit/hyperactivity disorder (ADHD): Findings from a family-based association test (FBAT) analysis. Behavioral and Brain Functions, 2008, 4, 48.	3.3	145
47	Impaired conflict resolution and alerting in children with ADHD: evidence from the Attention Network Task (ANT). Journal of Child Psychology and Psychiatry and Allied Disciplines, 2008, 49, 1339-1347.	5.2	141
48	DSMâ€₩ combined type ADHD shows familial association with sibling trait scores: A sampling strategy for QTL linkage. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1450-1460.	1.7	129
49	Psychosis Susceptibility Gene ZNF804A and Cognitive Performance in Schizophrenia. Archives of General Psychiatry, 2010, 67, 692.	12.3	129
50	Gene–environment interplay in attention-deficit hyperactivity disorder and the importance of a developmental perspective. British Journal of Psychiatry, 2007, 190, 1-3.	2.8	127
51	The SNP ratio test: pathway analysis of genome-wide association datasets. Bioinformatics, 2009, 25, 2762-2763.	4.1	125
52	Attention Network Hypoconnectivity With Default and Affective Network Hyperconnectivity in Adults Diagnosed With Attention-Deficit/Hyperactivity Disorder in Childhood. JAMA Psychiatry, 2013, 70, 1329.	11.0	115
53	Association of DRD4 in children with ADHD and comorbid conduct problems. American Journal of Medical Genetics Part A, 2002, 114, 150-153.	2.4	109
54	Variance in neurocognitive performance is associated with dysbindin-1 in schizophrenia: A preliminary study. Neuropsychologia, 2007, 45, 454-458.	1.6	109

#	Article	IF	CITATIONS
55	Development of Strategies for SNP Detection in RNA-Seq Data: Application to Lymphoblastoid Cell Lines and Evaluation Using 1000 Genomes Data. PLoS ONE, 2013, 8, e58815.	2.5	108
56	Biological Overlap of Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder: Evidence From Copy Number Variants. Journal of the American Academy of Child and Adolescent Psychiatry, 2014, 53, 761-770.e26.	0.5	105
57	Genomeâ€wide association scan of the time to onset of attention deficit hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1355-1358.	1.7	103
58	Attention Deficit/Hyperactivity Disorder-Derived Coding Variation in the Dopamine Transporter Disrupts Microdomain Targeting and Trafficking Regulation. Journal of Neuroscience, 2012, 32, 5385-5397.	3.6	102
59	No evidence for an association of affective disorders with high- or low-activity allele of catechol-o-methyltransferase gene. Biological Psychiatry, 1997, 42, 282-285.	1.3	101
60	Preferential Transmission of Paternal Alleles at Risk Genes in Attention-Deficit/Hyperactivity Disorder. American Journal of Human Genetics, 2005, 77, 958-965.	6.2	100
61	Genetic relationships between suicide attempts, suicidal ideation and major psychiatric disorders: A genomeâ€wide association and polygenic scoring study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 428-437.	1.7	99
62	Genomewide Association Scan of Suicidal Thoughts and Behaviour in Major Depression. PLoS ONE, 2011, 6, e20690.	2.5	98
63	Familiality of Symptom Dimensions in Depression. Archives of General Psychiatry, 2004, 61, 468.	12.3	97
64	A review of gene linkage, association and expression studies in autism and an assessment of convergent evidence. International Journal of Developmental Neuroscience, 2007, 25, 69-85.	1.6	97
65	Shared polygenic contribution between childhood attention-deficit hyperactivity disorder and adult schizophrenia. British Journal of Psychiatry, 2013, 203, 107-111.	2.8	93
66	Confirmation of Association Between Autism and the Mitochondrial Aspartate/Glutamate CarrierSLC25A12Gene on Chromosome 2q31. American Journal of Psychiatry, 2005, 162, 2182-2184.	7.2	91
67	Oxytocin receptor (OXTR) does not play a major role in the aetiology of autism: Genetic and molecular studies. Neuroscience Letters, 2010, 474, 163-167.	2.1	90
68	No association of the dopamine DRD4 receptor (DRD4) gene polymorphism with attention deficit hyperactivity disorder (ADHD) in the Irish population. American Journal of Medical Genetics Part A, 2000, 96, 268-272.	2.4	89
69	Neuropsychological correlates of emotional lability in children with ADHD. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2012, 53, 1139-1148.	5.2	89
70	The Cognitive Genetics of Attention Deficit Hyperactivity Disorder (ADHD): Sustained attention as a Candidate Phenotype. Cortex, 2006, 42, 838-845.	2.4	88
71	Evaluation of a Susceptibility Gene for Schizophrenia: Genotype Based Meta-Analysis of RGS4 Polymorphisms from Thirteen Independent Samples. Biological Psychiatry, 2006, 60, 152-162.	1.3	87
72	Evidence for a genetic association between alleles of monoamine oxidase a gene and bipolar affective disorder. American Journal of Medical Genetics Part A, 1995, 60, 325-331.	2.4	85

#	Article	IF	CITATIONS
73	No evidence for association of the dysbindin gene [DTNBP1] with schizophrenia in an Irish population-based study. Schizophrenia Research, 2003, 60, 167-172.	2.0	85
74	Association between Dopamine Transporter (DAT1) Genotype, Left-Sided Inattention, and an Enhanced Response to Methylphenidate in Attention-Deficit Hyperactivity Disorder. Neuropsychopharmacology, 2005, 30, 2290-2297.	5.4	85
75	Brainâ€derived neurotrophic factor Val66Met polymorphism and early life adversity affect hippocampal volume. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 183-190.	1.7	85
76	DRD4gene variants and sustained attention in attention deficit hyperactivity disorder (ADHD): Effects of associated alleles at the VNTR and â^2521 SNP. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 136B, 81-86.	1.7	84
77	A review of neuropsychological and neuroimaging research in autistic spectrum disorders: Attention, inhibition and cognitive flexibility. Research in Autism Spectrum Disorders, 2008, 2, 1-16.	1.5	84
78	Single-Nucleotide Polymorphism of the FKBP5 Gene and Childhood Maltreatment as Predictors of Structural Changes in Brain Areas Involved in Emotional Processing in Depression. Neuropsychopharmacology, 2016, 41, 487-497.	5.4	83
79	CNV analysis in a large schizophrenia sample implicates deletions at 16p12.1 and SLC1A1 and duplications at 1p36.33 and CGNL1. Human Molecular Genetics, 2014, 23, 1669-1676.	2.9	82
80	The methionine allele of the COMT polymorphism impairs prefrontal cognition in children and adolescents with ADHD. Experimental Brain Research, 2005, 163, 352-360.	1.5	80
81	Does parental expressed emotion moderate genetic effects in ADHD? an exploration using a genome wide association scan. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1359-1368.	1.7	78
82	ZNF804A risk allele is associated with relatively intact gray matter volume in patients with schizophrenia. Neurolmage, 2011, 54, 2132-2137.	4.2	78
83	Candidate Genetic Pathways for Attention-Deficit/Hyperactivity Disorder (ADHD) Show Association to Hyperactive/Impulsive Symptoms in Children With ADHD. Journal of the American Academy of Child and Adolescent Psychiatry, 2013, 52, 1204-1212.e1.	0.5	75
84	Noradrenergic genotype predicts lapses in sustained attention. Neuropsychologia, 2009, 47, 591-594.	1.6	73
85	The hierarchical factor model of ADHD: invariant across age and national groupings?. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2012, 53, 292-303.	5.2	72
86	Functionality of promoter microsatellites of arginine vasopressin receptor 1A (AVPR1A): implications for autism. Molecular Autism, 2011, 2, 3.	4.9	71
87	Neurocognition and suicidal behaviour in an Irish population with major psychotic disorders. Schizophrenia Research, 2006, 85, 196-200.	2.0	69
88	Implication of a Rare Deletion at Distal 16p11.2 in Schizophrenia. JAMA Psychiatry, 2013, 70, 253.	11.0	69
89	BDNFVal66Met genotype interacts with childhood adversity and influences the formation of hippocampal subfields. Human Brain Mapping, 2014, 35, 5776-5783.	3.6	67
90	No linkage or linkage disequilibrium between brain-derived neurotrophic factor (BDNF) dinucleotide repeat polymorphism and schizophrenia in Irish families. Psychiatry Research, 1998, 81, 111-116.	3.3	66

#	Article	IF	CITATIONS
91	Association analysis of the monoamine oxidase A and B genes with attention deficit hyperactivity disorder (ADHD) in an Irish sample: Preferential transmission of the MAO-A 941G allele to affected children. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2005, 134B, 110-114.	1.7	66
92	Variability in Time Reproduction: Difference in ADHD Combined and Inattentive Subtypes. Journal of the American Academy of Child and Adolescent Psychiatry, 2005, 44, 169-176.	0.5	65
93	It Is Time to Take a Stand for Medical Research and Against Terrorism Targeting Medical Scientists. Biological Psychiatry, 2008, 63, 725-727.	1.3	65
94	Nicotinic acetylcholine receptor α4 subunit gene polymorphism and attention deficit hyperactivity disorder. Psychiatric Genetics, 2001, 11, 37-40.	1.1	64
95	Phenotype studies of theDRD4 gene polymorphisms in ADHD: Association with oppositional defiant disorder and positive family history. American Journal of Medical Genetics Part A, 2004, 131B, 38-42.	2.4	64
96	The impact of study design and diagnostic approach in a large multi-centre ADHD study. Part 1: ADHD symptom patterns. BMC Psychiatry, 2011, 11, 54.	2.6	64
97	Absence of the 7â€repeat variant of the DRD4 VNTR is associated with drifting sustained attention in children with ADHD but not in controls. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 927-937.	1.7	62
98	Early Visual Processing Deficits in Dysbindin-Associated Schizophrenia. Biological Psychiatry, 2008, 63, 484-489.	1.3	62
99	Relationship between obesity and the risk of clinically significant depression: Mendelian randomisation study. British Journal of Psychiatry, 2014, 205, 24-28.	2.8	62
100	Mental state decoding v. mental state reasoning as a mediator between cognitive and social function in psychosis. British Journal of Psychiatry, 2008, 193, 77-78.	2.8	61
101	Dermatoglyphic fluctuating asymmetry and atypical handedness in schizophrenia. Schizophrenia Research, 2001, 50, 159-168.	2.0	60
102	The Role of the Major Histocompatibility Complex Region in Cognition and Brain Structure: A Schizophrenia GWAS Follow-Up. American Journal of Psychiatry, 2013, 170, 877-885.	7.2	60
103	Dissociation in response to methylphenidate on response variability in a group of medication naÃ ⁻ ve children with ADHD. Neuropsychologia, 2008, 46, 1532-1541.	1.6	58
104	A genetic risk score combining 32 SNPs is associated with body mass index and improves obesity prediction in people with major depressive disorder. BMC Medicine, 2015, 13, 86.	5.5	56
105	No association between catechol-O-methyltransferase (COMT) gene polymorphism and attention deficit hyperactivity disorder (ADHD) in an Irish sample. American Journal of Medical Genetics Part A, 2000, 96, 282-284.	2.4	55
106	Dysbindin (DTNBP1) and the Biogenesis of Lysosome-Related Organelles Complex 1 (BLOC-1): Main and Epistatic Gene Effects Are Potential Contributors to Schizophrenia Susceptibility. Biological Psychiatry, 2008, 63, 24-31.	1.3	54
107	fMRI activation during response inhibition and error processing: The role of the DAT1 gene in typically developing adolescents and those diagnosed with ADHD. Neuropsychologia, 2011, 49, 1641-1650.	1.6	53
108	The Role of Variation at AβPP, PSEN1, PSEN2, and MAPT in Late Onset Alzheimer's Disease. Journal of Alzheimer's Disease, 2012, 28, 377-387.	2.6	53

#	Article	IF	CITATIONS
109	New data and an old puzzle: the negative association between schizophrenia and rheumatoid arthritis. International Journal of Epidemiology, 2015, 44, 1706-1721.	1.9	53
110	Linkage between tyrosine hydroxylase gene and affective disorder cannot be excluded in two of six pedigrees. American Journal of Medical Genetics Part A, 1993, 48, 223-228.	2.4	51
111	Dopaminergic Haplotype as a Predictor of Spatial Inattention in Children With Attention-Deficit/Hyperactivity Disorder. Archives of General Psychiatry, 2009, 66, 1135.	12.3	50
112	No evidence of linkage or association between the norepinephrine transporter (NET) gene polymorphisms and ADHD in the Irish population. American Journal of Medical Genetics Part A, 2002, 114, 665-666.	2.4	49
113	Association of serotonin and dopamine gene pathways with behavioral subphenotypes in dementia. Neurobiology of Aging, 2012, 33, 791-803.	3.1	49
114	Insulin-like growth factor 1 (IGF1) and its active peptide (1–3)IGF1 enhance the expression of synaptic markers in neuronal circuits through different cellular mechanisms. Neuroscience Letters, 2012, 520, 51-56.	2.1	49
115	Population structure and genome-wide patterns of variation in Ireland and Britain. European Journal of Human Genetics, 2010, 18, 1248-1254.	2.8	46
116	Multiple marker analysis at the promoter region of theDRD4 gene and ADHD: Evidence of linkage and association with the SNP ?616. American Journal of Medical Genetics Part A, 2004, 131B, 33-37.	2.4	45
117	Influence of NOS1 on Verbal Intelligence and Working Memory in Both Patients With Schizophrenia and Healthy Control Subjects. Archives of General Psychiatry, 2009, 66, 1045.	12.3	45
118	Effect of Genetic Variant in BICC1 on Functional and Structural Brain Changes in Depression. Neuropsychopharmacology, 2012, 37, 2855-2862.	5.4	45
119	The impact of study design and diagnostic approach in a large multi-centre ADHD study: Part 2: Dimensional measures of psychopathology and intelligence. BMC Psychiatry, 2011, 11, 55.	2.6	44
120	Social cognition in bipolar disorder versus schizophrenia: comparability in mental state decoding deficits. Bipolar Disorders, 2012, 14, 743-748.	1.9	44
121	DNA Variation in the SNAP25 Gene Confers Risk to ADHD and Is Associated with Reduced Expression in Prefrontal Cortex. PLoS ONE, 2013, 8, e60274.	2.5	44
122	Tyrosine hydroxylase polymorphisms and bipolar affective disorder. Journal of Psychiatric Research, 1991, 25, 179-184.	3.1	43
123	No association or linkage between the 5-HT2a/T102C polymorphism and schizophrenia in Irish families. American Journal of Medical Genetics Part A, 1997, 74, 370-373.	2.4	42
124	Effects of MIR137 on fronto-amygdala functional connectivity. NeuroImage, 2014, 90, 189-195.	4.2	42
125	Linkage to Chromosome 1p36 for Attention-Deficit/Hyperactivity Disorder Traits in School and Home Settings. Biological Psychiatry, 2008, 64, 571-576.	1.3	41
126	Spatial Attentional Bias as a Marker of Genetic Risk, Symptom Severity, and Stimulant Response in ADHD. Neuropsychopharmacology, 2008, 33, 2536-2545.	5.4	41

#	Article	IF	CITATIONS
127	Multiplex Target Enrichment Using DNA Indexing for Ultra-High Throughput SNP Detection. DNA Research, 2011, 18, 31-38.	3.4	41
128	Functional Genomics and Schizophrenia: Endophenotypes and Mutant Models. Psychiatric Clinics of North America, 2007, 30, 365-399.	1.3	40
129	A Functional Variant of the Serotonin Transporter Gene (SLC6A4) Moderates Impulsive Choice in Attention-Deficit/Hyperactivity Disorder Boys and Siblings. Biological Psychiatry, 2011, 70, 230-236.	1.3	40
130	Identifying Loci for the Overlap Between Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Using a Genome-wide QTL Linkage Approach. Journal of the American Academy of Child and Adolescent Psychiatry, 2010, 49, 675-685.	0.5	40
131	Mutation of Semaphorin-6A Disrupts Limbic and Cortical Connectivity and Models Neurodevelopmental Psychopathology. PLoS ONE, 2011, 6, e26488.	2.5	40
132	Gene-ontology enrichment analysis in two independent family-based samples highlights biologically plausible processes for autism spectrum disorders. European Journal of Human Genetics, 2011, 19, 1082-1089.	2.8	39
133	An inherited duplication at the gene p21 Protein-Activated Kinase 7 (PAK7) is a risk factor for psychosis. Human Molecular Genetics, 2014, 23, 3316-3326.	2.9	37
134	Genetic heterogeneity in ADHD: <i>DAT1</i> gene only affects probands without CD. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1481-1487.	1.7	36
135	Genome-wide association study of motor coordination problems in ADHD identifies genes for brain and muscle function. World Journal of Biological Psychiatry, 2012, 13, 211-222.	2.6	35
136	Cognitive Decline in Down Syndrome: A Validity/Reliability Study of the Test for Severe Impairment. American Journal on Intellectual and Developmental Disabilites, 1998, 103, 193.	2.4	34
137	The dopamine receptor D4 7â€repeat allele and prenatal smoking in ADHDâ€affected children and their unaffected siblings: no gene–environment interaction. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2008, 49, 1053-1060.	5.2	34
138	Education, occupation and retirement age effects on the age of onset of Alzheimer's disease. International Journal of Geriatric Psychiatry, 2010, 25, 30-36.	2.7	34
139	A Protective Effect of Apolipoprotein E e2 Allele on Dementia in Down's Syndrome. Biological Psychiatry, 1998, 43, 397-400.	1.3	33
140	Are relational style and neuropsychological performance predictors of social attributions in chronic schizophrenia?. Psychiatry Research, 2008, 161, 19-27.	3.3	33
141	Is "clinical―insight the same as "cognitive―insight in schizophrenia?. Journal of the International Neuropsychological Society, 2009, 15, 471-475.	1.8	32
142	Evidence for <i>cis</i> â€acting regulation of ANK3 and CACNA1C gene expression. Bipolar Disorders, 2010, 12, 440-445.	1.9	31
143	Dissecting the Genetic Heterogeneity of Depression Through Age at Onset. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2012, 159B, 859-868.	1.7	31
144	A dysbindin risk haplotype associated with less severe manic-type symptoms in psychosis. Neuroscience Letters, 2008, 431, 146-149.	2.1	30

#	Article	IF	CITATIONS
145	A high density linkage disequilibrium mapping in 14 noradrenergic genes: evidence of association between SLC6A2, ADRA1B and ADHD. Psychopharmacology, 2013, 225, 895-902.	3.1	30
146	Neural effects of the <scp><i>CSMD</i></scp> <i>1</i> genomeâ€wide associated schizophrenia risk variant rs10503253. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 530-537.	1.7	30
147	Effects of a novel schizophrenia risk variant rs7914558 at <i>CNNM2</i> on brain structure and attributional style. British Journal of Psychiatry, 2014, 204, 115-121.	2.8	30
148	Altered medial prefrontal activity during dynamic face processing in schizophrenia spectrum patients. Schizophrenia Research, 2014, 157, 225-230.	2.0	30
149	Are patients with bipolar affective disorder socially disadvantaged? A comparison with a control group. Bipolar Disorders, 2002, 4, 243-248.	1.9	29
150	Reduced Occipital and Prefrontal Brain Volumes in Dysbindin-Associated Schizophrenia. Neuropsychopharmacology, 2010, 35, 368-373.	5.4	29
151	Genetic Differences between Five European Populations. Human Heredity, 2010, 70, 141-149.	0.8	29
152	Methylphenidate Side Effect Profile Is Influenced by Genetic Variation in the Attention-Deficit/Hyperactivity Disorder-Associated CES1 Gene. Journal of Child and Adolescent Psychopharmacology, 2013, 23, 655-664.	1.3	29
153	Angiogenic, neurotrophic, and inflammatory system SNPs moderate the association between birth weight and ADHD symptom severity. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 691-704.	1.7	29
154	No association between CHRNA7 microsatellite markers and attention-deficit hyperactivity disorder. American Journal of Medical Genetics Part A, 2001, 105, 686-689.	2.4	28
155	Partial Replication of a DRD4 Association in ADHD Individuals Using a Statistically Derived Quantitative Trait for ADHD in a Family-Based Association Test. Biological Psychiatry, 2007, 62, 985-990.	1.3	28
156	Chitinase-3-Like 1 (CHI3L1) Gene and Schizophrenia: Genetic Association and a Potential Functional Mechanism. Biological Psychiatry, 2008, 64, 98-103.	1.3	28
157	Atypical Visuospatial Processing in Autism: Insights from Functional Connectivity Analysis. Autism Research, 2012, 5, 314-330.	3.8	28
158	Variability in Working Memory Performance Explained by Epistasis vs Polygenic Scores in the <i>ZNF804A</i> Pathway. JAMA Psychiatry, 2014, 71, 778.	11.0	28
159	Cognitive Characterization of Schizophrenia Risk Variants Involved in Synaptic Transmission: Evidence of CACNA1C's Role in Working Memory. Neuropsychopharmacology, 2017, 42, 2612-2622.	5.4	28
160	d-Amino acid oxidase (DAO) genotype and mood symptomatology in schizophrenia. Neuroscience Letters, 2007, 426, 97-100.	2.1	26
161	Does the ability to sustain attention underlie symptom severity in schizophrenia?. Schizophrenia Research, 2009, 107, 319-323.	2.0	26
162	The Effect of the Neurogranin Schizophrenia Risk Variant rs12807809 on Brain Structure and Function. Twin Research and Human Genetics, 2012, 15, 296-303.	0.6	26

#	Article	IF	CITATIONS
163	The NOS1 variant rs6490121 is associated with variation in prefrontal function and grey matter density in healthy individuals. NeuroImage, 2012, 60, 614-622.	4.2	26
164	MDMA toxicity: no evidence for a major influence of metabolic genotype at CYP2D6. Addiction Biology, 1998, 3, 309-314.	2.6	25
165	Parent of origin effects in attention/deficit hyperactivity disorder (ADHD): Analysis of data from the international multicenter ADHD genetics (IMAGE) program. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1495-1500.	1.7	25
166	Social dysfunction in schizophrenia: An investigation of the GAF scale's sensitivity to deficits in social cognition. Schizophrenia Research, 2013, 146, 363-365.	2.0	25
167	Independent evidence for an association between general cognitive ability and a genetic locus for educational attainment. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2015, 168, 363-373.	1.7	25
168	A transmission/disequilibrium study of the DRB1*04 gene locus on chromosome 6p21.3 with schizophrenia. Schizophrenia Research, 1998, 32, 75-80.	2.0	24
169	Are deficits in executive sub-processes simply reflecting more general cognitive decline in schizophrenia?. Schizophrenia Research, 2006, 85, 168-173.	2.0	24
170	Alzheimer's disease and age-related macular degeneration have different genetic models for complement gene variation. Neurobiology of Aging, 2012, 33, 1843.e9-1843.e17.	3.1	24
171	No evidence that common genetic risk variation is shared between schizophrenia and autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 55-60.	1.7	24
172	No association between TPH2 gene polymorphisms and ADHD in a UK sample. Neuroscience Letters, 2007, 412, 105-107.	2.1	23
173	Moodâ€incongruent psychosis in bipolar disorder: conditional linkage analysis shows genomeâ€wide suggestive linkage at 1q32.3, 7p13 and 20q13.31. Bipolar Disorders, 2009, 11, 610-620.	1.9	23
174	A neuropsychological investigation of the genome wide associated schizophrenia risk variant NRGN rs12807809. Schizophrenia Research, 2011, 125, 304-306.	2.0	23
175	HLA and schizophrenia: Refutation of reported associations with A9 (A23/A24), DR4, and DQ?1*0602. , 1999, 88, 416-421.		21
176	Impaired Temporal Resolution of Visual Attention and Dopamine Beta Hydroxylase Genotype in Attention-Deficit/Hyperactivity Disorder. Biological Psychiatry, 2006, 60, 1039-1045.	1.3	21
177	Sex differences in symptom patterns of recurrent major depression in siblings. Depression and Anxiety, 2008, 25, 527-534.	4.1	21
178	The <i>ATXN1</i> and <i>TRIM31</i> genes are related to intelligence in an ADHD background: Evidence from a large collaborative study totaling 4,963 Subjects. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 145-157.	1.7	21
179	The phenotypic manifestations of rare CNVs in schizophrenia. Schizophrenia Research, 2014, 158, 255-260.	2.0	21
180	Association of the α4 integrin subunit gene (<i>ITGA4</i>) with autism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 1147-1151.	1.7	20

#	Article	IF	CITATIONS
181	Analysis of the hexanucleotide repeat expansion and founder haplotype at C9ORF72 in an Irish psychosis case-control sample. Neurobiology of Aging, 2014, 35, 1510.e1-1510.e5.	3.1	20
182	Schizophrenia and HLA: No association with PCR-SSOP typed classical loci in a large Irish familial sample. , 1999, 88, 422-429.		19
183	Brief report: A case of autism associated with del(2)(q32.1q32.2) or (q32.2q32.3). Journal of Autism and Developmental Disorders, 2003, 33, 105-108.	2.7	19
184	Population differences in the International Multi entre ADHD Gene Project. Genetic Epidemiology, 2008, 32, 98-107.	1.3	19
185	A <i>NOS1</i> variant implicated in cognitive performance influences evoked neural responses during a high density EEG study of early visual perception. Human Brain Mapping, 2012, 33, 1202-1211.	3.6	19
186	Replicated genetic evidence supports a role for HOMER2 in schizophrenia. Neuroscience Letters, 2010, 468, 229-233.	2.1	18
187	Functional investigation of a schizophrenia GWAS signal at the CDC42 gene. World Journal of Biological Psychiatry, 2012, 13, 550-554.	2.6	18
188	No evidence that runs of homozygosity are associated with schizophrenia in an Irish genome-wide association dataset. Schizophrenia Research, 2014, 154, 79-82.	2.0	18
189	Intelligence in DSM-IV combined type attention-deficit/hyperactivity disorder is not predicted by either dopamine receptor/transporter genes or other previously identified risk alleles for attention-deficit/hyperactivity disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2008. 147B. 316-319.	1.7	17
190	Dopaminergic genotype influences spatial bias in healthy adults. Neuropsychologia, 2010, 48, 2458-2464.	1.6	17
191	No evidence that extended tracts of homozygosity are associated with Alzheimer's disease. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 764-771.	1.7	17
192	Genome-wide association study of co-occurring anxiety in major depression. World Journal of Biological Psychiatry, 2013, 14, 611-621.	2.6	17
193	The miRâ€137 schizophrenia susceptibility variant rs1625579 does not predict variability in brain volume in a sample of schizophrenic patients and healthy individuals. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2014, 165, 467-471.	1.7	17
194	A linkage study of schizophrenia with DNA markers from chromosome 8p21-p22 in 25 multiplex families. Schizophrenia Research, 1996, 22, 61-68.	2.0	16
195	Genetic Classification of Populations Using Supervised Learning. PLoS ONE, 2011, 6, e14802.	2.5	16
196	Functional assessment of a promoter polymorphism in S100B, a putative risk variant for bipolar disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2011, 156, 691-699.	1.7	16
197	Genomeâ€wide association analysis accounting for environmental factors through propensityâ€score matching: Application to stressful live events in major depressive disorder. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 521-529.	1.7	16
198	Impaired reward processing in the human prefrontal cortex distinguishes between persistent and remittent attention deficit hyperactivity disorder. Human Brain Mapping, 2015, 36, 4648-4663.	3.6	16

#	Article	IF	CITATIONS
199	Coenzyme Q10 and neuropsychiatric and neurological disorders: relevance for schizophrenia. Nutritional Neuroscience, 2020, 23, 756-769.	3.1	16
200	No evidence for linkage between the X-chromosome marker DXS7 and schizophrenia. American Journal of Medical Genetics Part A, 1995, 60, 461-464.	2.4	15
201	Do antisaccade deficits in schizophrenia provide evidence of a specific inhibitory function?. Journal of the International Neuropsychological Society, 2006, 12, 901-6.	1.8	15
202	Replication of an association of a promoter polymorphism of the dopamine transporter gene and Attention Deficit Hyperactivity Disorder. Neuroscience Letters, 2009, 462, 179-181.	2.1	15
203	Exploration of empirical Bayes hierarchical modeling for the analysis of genome-wide association study data. Biostatistics, 2011, 12, 445-461.	1.5	15
204	Association between <i>DRD2</i> / <i>DRD4</i> interaction and conduct disorder: A potential developmental pathway to alcohol dependence. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2013, 162, 546-549.	1.7	15
205	Genome-wide schizophrenia variant at MIR137 does not impact white matter microstructure in healthy participants. Neuroscience Letters, 2014, 574, 6-10.	2.1	15
206	Investigating the genetic variation underlying episodicity in major depressive disorder: Suggestive evidence for a bipolar contribution. Journal of Affective Disorders, 2014, 155, 81-89.	4.1	15
207	Novelty seeking traits and D4 dopamine receptors. , 2000, 96, 222-223.		12
208	Investigation of the apolipoprotein-L (APOL) gene family and schizophrenia using a novel DNA pooling strategy for public database SNPs. Schizophrenia Research, 2005, 76, 231-238.	2.0	12
209	Fine mapping and association studies in a candidate region for autism on chromosome 2q31–q32. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2009, 150B, 535-544.	1.7	12
210	Developmental psychopathology: The role of structural variation in the genome. Development and Psychopathology, 2012, 24, 1319-1334.	2.3	12
211	Methylphenidate improves some but not all measures of ATTENTION, as measured by the TEA-Ch in medication-naÃ ⁻ ve children with ADHD. Child Neuropsychology, 2014, 20, 303-318.	1.3	12
212	Allelic association between a Ser-9-Gly polymorphism in the dopamine D3 receptor gene and schizophrenia. Human Genetics, 1996, 97, 714-719.	3.8	12
213	Nonâ€random error in genotype calling procedures: Implications for familyâ€based and case–control genomeâ€wide association studies. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2008, 147B, 1379-1386.	1.7	11
214	Epistasis between neurochemical gene polymorphisms and risk for ADHD. European Journal of Human Genetics, 2011, 19, 577-582.	2.8	11
215	Identification and functional characterisation of a novel dopamine beta hydroxylase gene variant associated with attention deficit hyperactivity disorder. World Journal of Biological Psychiatry, 2015, 16, 610-618.	2.6	11
216	A Continuous Linkage Map of 22 Short Tandem Repeat Polymorphisms on Human Chromosome 12. Genomics, 1993, 17, 245-248.	2.9	10

#	Article	IF	CITATIONS
217	No evidence of linkage or allelic association of schizophrenia with DNA markers at pericentric region of chromosome 9. Biological Psychiatry, 1994, 36, 589-594.	1.3	10
218	No evidence of linkage or association between ADHD and DXS7 locus in Irish population. American Journal of Medical Genetics Part A, 2001, 105, 394-395.	2.4	10
219	Lower frequency of apolipoprotein E4 allele in an "elderly―Down's syndrome population. Biological Psychiatry, 1996, 40, 811-813.	1.3	9
220	Irish Mental Health Act 2001: impact on involuntary admissions in a community mental health service in Dublin. The Psychiatrist, 2010, 34, 436-440.	0.3	9
221	Schizophrenia and the androgen receptor gene: Report of a sibship showing co-segregation with reifenstein syndrome but no evidence for linkage in 23 multiply affected families. American Journal of Medical Genetics Part A, 1995, 60, 377-381.	2.4	8
222	Problem-Based Learning in Child and Adolescent Psychiatry at Trinity College, Dublin, Ireland. Academic Psychiatry, 2012, 36, 335.	0.9	8
223	An Overview of the Pharmacogenetics and Molecular Genetics of ADHD. Current Pharmacogenomics and Personalized Medicine: the International Journal for Expert Reviews in Pharmacogenomics, 2006, 4, 231-243.	0.3	7
224	A Case of ADHD and a Major Y Chromosome Abnormality. Journal of Attention Disorders, 2008, 12, 103-105.	2.6	7
225	Systematic search for major genes in schizophrenia: Methodological issues and results from chromosome 12. American Journal of Medical Genetics Part A, 1995, 60, 424-433.	2.4	6
226	Presenilin 1 and ?-1-antichymotrypsin polymorphisms in down syndrome: No effect on the presence of dementia. , 1999, 88, 616-620.		6
227	Virtual Interviews for Students Interacting Online for Psychiatry (VISIOn): a novel resource for learning clinical interview skills. Psychiatric Bulletin, 2007, 31, 218-220.	0.3	6
228	Variance in facial recognition performance associated with BDNF in schizophrenia. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2007, 144B, 578-579.	1.7	6
229	Lack of association between markers in the ITGA3, ITGAV, ITGA6 and ITGB3 and autism in an Irish sample. Autism Research, 2010, 3, 342-344.	3.8	6
230	Genetic mapping of 14 short tandem repeat polymorphisms on human chromosome 22. Human Genetics, 1994, 93, 688-90.	3.8	5
231	Protein kinase C-beta 1 gene variants are not associated with autism in the Irish population. Psychiatric Genetics, 2007, 17, 39-41.	1.1	5
232	An assessment of the Irish population for large-scale genetic mapping studies involving epilepsy and other complex diseases. European Journal of Human Genetics, 2008, 16, 176-183.	2.8	5
233	Evaluation of parent-of-origin effect in bipolar affective disorder relating to susceptibility loci on chromosome 18. Bipolar Disorders, 2002, 4, 31-32.	1.9	4
234	Schizophrenia Research: attempting to integrate genetics, neurodevelopment and nosology. International Review of Psychiatry, 1989, 1, 277-286.	2.8	3

#	Article	IF	CITATIONS
235	Assessing the statistical power to detect linkage in a sample of 51 bipolar affective disorder pedigrees. Behavior Genetics, 1996, 26, 113-122.	2.1	3
236	Allelic expression imbalance of the schizophrenia susceptibility gene CHI3L1. Psychiatric Genetics, 2011, 21, 281-286.	1.1	2
237	Reply to Joober and Sengupta. American Journal of Human Genetics, 2006, 79, 766-768.	6.2	1
238	Overlap between ADHD and Autism – Clinical and Genetic Evidence. Current Psychiatry Reviews, 2014, 10, 143-155.	0.9	1
239	Psychiatric genetics in the post-genome age. British Journal of Psychiatry, 2003, 182, 95-96.	2.8	0