## Takuya Ishimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7219694/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Crystallographic texture control of beta-type Ti–15Mo–5Zr–3Al alloy by selective laser melting for<br>the development of novel implants with a biocompatible low Young's modulus. Scripta Materialia,<br>2017, 132, 34-38.                                 | 2.6 | 302       |
| 2  | Excellent mechanical and corrosion properties of austenitic stainless steel with a unique<br>crystallographic lamellar microstructure via selective laser melting. Scripta Materialia, 2019, 159,<br>89-93.                                                | 2.6 | 267       |
| 3  | Unique crystallographic texture formation in Inconel 718 by laser powder bed fusion and its effect on mechanical anisotropy. Acta Materialia, 2021, 212, 116876.                                                                                           | 3.8 | 174       |
| 4  | Degree of biological apatite <i>c</i> -axis orientation rather than bone mineral density controls<br>mechanical function in bone regenerated using recombinant bone morphogenetic protein-2. Journal<br>of Bone and Mineral Research, 2013, 28, 1170-1179. | 3.1 | 144       |
| 5  | Osteocalcin is necessary for the alignment of apatite crystallites, but not glucose metabolism, testosterone synthesis, or muscle mass. PLoS Genetics, 2020, 16, e1008586.                                                                                 | 1.5 | 119       |
| 6  | Development of high Zr-containing Ti-based alloys with low Young's modulus for use in removable implants. Materials Science and Engineering C, 2011, 31, 1436-1444.                                                                                        | 3.8 | 113       |
| 7  | Biological apatite (BAp) crystallographic orientation and texture as a new index for assessing the microstructure and function of bone regenerated by tissue engineering. Bone, 2012, 51, 741-747.                                                         | 1.4 | 107       |
| 8  | Optimization of Cr content of metastable β-type Ti–Cr alloys with changeable Young's modulus for<br>spinal fixation applications. Acta Biomaterialia, 2012, 8, 2392-2400.                                                                                  | 4.1 | 107       |
| 9  | Development of TiNbTaZrMo bio-high entropy alloy (BioHEA) super-solid solution by selective laser<br>melting, and its improved mechanical property and biocompatibility. Scripta Materialia, 2021, 194,<br>113658.                                         | 2.6 | 95        |
| 10 | Bone Loss and Reduced Bone Quality of the Human Femur after Total Hip Arthroplasty under<br>Stress-Shielding Effects by Titanium-Based Implant. Materials Transactions, 2012, 53, 565-570.                                                                 | 0.4 | 91        |
| 11 | Dual release of growth factor from nanocomposite fibrous scaffold promotes vascularisation and bone regeneration in rat critical sized calvarial defect. Acta Biomaterialia, 2018, 78, 36-47.                                                              | 4.1 | 85        |
| 12 | Design and optimization of the oriented groove on the hip implant surface to promote bone microstructure integrity. Bone, 2013, 52, 659-667.                                                                                                               | 1.4 | 78        |
| 13 | Crystallographic Orientation Control of 316L Austenitic Stainless Steel via Selective Laser Melting. ISIJ<br>International, 2020, 60, 1758-1764.                                                                                                           | 0.6 | 69        |
| 14 | Successful additive manufacturing of MoSi2 including crystallographic texture and shape control.<br>Journal of Alloys and Compounds, 2017, 696, 67-72.                                                                                                     | 2.8 | 66        |
| 15 | Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin. Scientific Reports, 2016, 6, 19849.                                                                                                   | 1.6 | 63        |
| 16 | Effects of a coating resin containing S-PRG filler to prevent demineralization of root surfaces. Dental<br>Materials Journal, 2012, 31, 909-915.                                                                                                           | 0.8 | 62        |
| 17 | Synchronous disruption of anisotropic arrangement of the osteocyte network and collagen/apatite in melanoma bone metastasis. Journal of Structural Biology, 2017, 197, 260-270.                                                                            | 1.3 | 57        |
| 18 | Biomechanical evaluation of regenerating long bone by nanoindentation. Journal of Materials<br>Science: Materials in Medicine, 2011, 22, 969-976.                                                                                                          | 1.7 | 50        |

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Dietary L-Lysine Prevents Arterial Calcification in Adenine-Induced Uremic Rats. Journal of the<br>American Society of Nephrology: JASN, 2014, 25, 1954-1965.                                                                                                       | 3.0 | 47        |
| 20 | Optimally oriented grooves on dental implants improve bone quality around implants under repetitive mechanical loading. Acta Biomaterialia, 2017, 48, 433-444.                                                                                                      | 4.1 | 45        |
| 21 | Unloading-Induced Degradation of the Anisotropic Arrangement of Collagen/Apatite in Rat Femurs.<br>Calcified Tissue International, 2017, 100, 87-94.                                                                                                                | 1.5 | 44        |
| 22 | Powder-based Additive Manufacturing for Development of Tailor-made Implants for Orthopedic Applications. KONA Powder and Particle Journal, 2015, 32, 75-84.                                                                                                         | 0.9 | 42        |
| 23 | Osteoporosis Changes Collagen/Apatite Orientation and Young's Modulus in Vertebral Cortical Bone<br>of Rat. Calcified Tissue International, 2019, 104, 449-460.                                                                                                     | 1.5 | 41        |
| 24 | Zirconia–hydroxyapatite composite material with micro porous structure. Dental Materials, 2011, 27, e205-e212.                                                                                                                                                      | 1.6 | 40        |
| 25 | Novel powder/solid composites possessing low Young's modulus and tunable energy absorption capacity, fabricated by electron beam melting, for biomedical applications. Journal of Alloys and Compounds, 2015, 639, 336-340.                                         | 2.8 | 40        |
| 26 | Development of a root canal treatment model in the rat. Scientific Reports, 2017, 7, 3315.                                                                                                                                                                          | 1.6 | 40        |
| 27 | Single crystalline-like crystallographic texture formation of pure tungsten through laser powder bed fusion. Scripta Materialia, 2022, 206, 114252.                                                                                                                 | 2.6 | 40        |
| 28 | Lattice distortion in selective laser melting (SLM)-manufactured unstable β-type Ti-15Mo-5Zr-3Al alloy analyzed by high-precision X-ray diffractometry. Scripta Materialia, 2021, 201, 113953.                                                                      | 2.6 | 39        |
| 29 | A paradigm shift for bone quality in dentistry: A literature review. Journal of Prosthodontic<br>Research, 2017, 61, 353-362.                                                                                                                                       | 1.1 | 36        |
| 30 | Crystallographic orientation control of pure chromium via laser powder bed fusion and improved high temperature oxidation resistance. Additive Manufacturing, 2020, 36, 101624.                                                                                     | 1.7 | 36        |
| 31 | Co-deteriorations of anisotropic extracellular matrix arrangement and intrinsic mechanical property in c-src deficient osteopetrotic mouse femur. Bone, 2017, 103, 216-223.                                                                                         | 1.4 | 35        |
| 32 | Evaluation of Bone Quality near Metallic Implants with and without Lotus-Type Pores for Optimal<br>Biomaterial Design. Materials Transactions, 2006, 47, 2233-2239.                                                                                                 | 0.4 | 34        |
| 33 | The influence of the antibacterial monomer 12-methacryloyloxydodecylpyridinium bromide on the proliferation, differentiation and mineralization of odontoblast-like cells. Biomaterials, 2010, 31, 1518-1532.                                                       | 5.7 | 33        |
| 34 | Control of Mechanical Properties of Three-Dimensional Ti-6Al-4V Products Fabricated by Electron<br>Beam Melting with Unidirectional Elongated Pores. Metallurgical and Materials Transactions A:<br>Physical Metallurgy and Materials Science, 2014, 45, 4293-4301. | 1.1 | 31        |
| 35 | Novel evaluation method of dentin repair by direct pulp capping using high-resolution micro-computed tomography. Clinical Oral Investigations, 2018, 22, 2879-2887.                                                                                                 | 1.4 | 31        |
| 36 | Effects of mechanical repetitive load on bone quality around implants in rat maxillae. PLoS ONE, 2017, 12, e0189893.                                                                                                                                                | 1.1 | 29        |

| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Formation of New Bone with Preferentially Oriented Biological Apatite Crystals Using a Novel<br>Cylindrical Implant Containing Anisotropic Open Pores Fabricated by the Electron Beam Melting (EBM)<br>Method. ISIJ International, 2011, 51, 262-268. | 0.6 | 29        |
| 38 | Two-Dimensional Quantitative Analysis of Preferential Alignment of BAp c-axis for Isolated Human<br>Trabecular Bone Using Microbeam X-ray Diffractometer with a Transmission Optical System. Materials<br>Transactions, 2007, 48, 343-347.            | 0.4 | 28        |
| 39 | Stability of crystallographic texture in laser powder bed fusion: Understanding the competition of crystal growth using a single crystalline seed. Additive Manufacturing, 2021, 43, 102004.                                                          | 1.7 | 27        |
| 40 | Role of Stress Distribution on Healing Process of Preferential Alignment of Biological Apatite in Long<br>Bones. Materials Science Forum, 2006, 512, 261-264.                                                                                         | 0.3 | 26        |
| 41 | Quantitative Evaluation of Osteocyte Morphology and Bone Anisotropic Extracellular Matrix in Rat<br>Femur. Calcified Tissue International, 2021, 109, 434-444.                                                                                        | 1.5 | 25        |
| 42 | Trabecular health of vertebrae based on anisotropy in trabecular architecture and collagen/apatite<br>micro-arrangement after implantation of intervertebral fusion cages in the sheep spine. Bone, 2018,<br>108, 25-33.                              | 1.4 | 24        |
| 43 | Evaluation of crystallographic orientation of biological apatite in vertebral cortical bone in ovariectomized cynomolgus monkeys treated with minodronic acid and alendronate. Journal of Bone and Mineral Metabolism, 2016, 34, 234-241.             | 1.3 | 22        |
| 44 | Control of Crystallographic Texture and Mechanical Properties of Hastelloy-X via Laser Powder Bed<br>Fusion. Crystals, 2021, 11, 1064.                                                                                                                | 1.0 | 22        |
| 45 | Effect of a helium gas atmosphere on the mechanical properties of Ti-6Al-4V alloy built with laser powder bed fusion: A comparative study with argon gas. Additive Manufacturing, 2021, 48, 102444.                                                   | 1.7 | 22        |
| 46 | Individual mechanical properties of ferrite and martensite in Fe–0.16mass% C–1.0mass% Si–1.5mass%<br>Mn steel. Journal of Alloys and Compounds, 2013, 577, S593-S596.                                                                                 | 2.8 | 20        |
| 47 | Comparison of microstructure, crystallographic texture, and mechanical properties in<br>Ti–15Mo–5Zr–3Al alloys fabricated via electron and laser beam powder bed fusion technologies.<br>Additive Manufacturing, 2021, 47, 102329.                    | 1.7 | 20        |
| 48 | Effect of Scan Length on Densification and Crystallographic Texture Formation of Pure Chromium<br>Fabricated by Laser Powder Bed Fusion. Crystals, 2021, 11, 9.                                                                                       | 1.0 | 18        |
| 49 | Promotion of Endodontic Lesions in Rats by a Novel Extraradicular Biofilm Model Using Obturation<br>Materials. Applied and Environmental Microbiology, 2014, 80, 3804-3810.                                                                           | 1.4 | 17        |
| 50 | ExÂVivo Gene Therapy Treats Bone Complications of Mucopolysaccharidosis Type II Mouse Models<br>through Bone Remodeling Reactivation. Molecular Therapy - Methods and Clinical Development, 2020,<br>19, 261-274.                                     | 1.8 | 17        |
| 51 | 3D Puzzle in Cube Pattern for Anisotropic/Isotropic Mechanical Control of Structure Fabricated by<br>Metal Additive Manufacturing. Crystals, 2021, 11, 959.                                                                                           | 1.0 | 17        |
| 52 | Crystallographic texture- and grain boundary density-independent improvement of corrosion resistance in austenitic 316L stainless steel fabricated via laser powder bed fusion. Additive Manufacturing, 2021, 45, 102066.                             | 1.7 | 17        |
| 53 | Surface residual stress and phase stability in unstable β-type Ti–15Mo–5Zr–3Al alloy manufactured by<br>laser and electron beam powder bed fusion technologies. Additive Manufacturing, 2021, 47, 102257.                                             | 1.7 | 17        |
| 54 | Effects of single or combination therapy of teriparatide and anti-RANKL monoclonal antibody on bone defect regeneration in mice. Bone, 2018, 106, 1-10.                                                                                               | 1.4 | 16        |

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Quantitative ultrasound (QUS) axial transmission method reflects anisotropy in micro-arrangement<br>of apatite crystallites in human long bones: A study with 3-MHz-frequency ultrasound. Bone, 2019, 127,<br>82-90.           | 1.4 | 16        |
| 56 | Factor which governs the feature of texture developed during additive manufacturing; clarified from the study on hexagonal C40-NbSi2. Scripta Materialia, 2021, 203, 114111.                                                   | 2.6 | 15        |
| 57 | <i>In vitro</i> assessment of a calcium-fluoroaluminosilicate glass-based desensitizer for<br>the prevention of root surface demineralization. Dental Materials Journal, 2016, 35, 399-407.                                    | 0.8 | 14        |
| 58 | Influence of powder characteristics on densification via crystallographic texture formation: Pure tungsten prepared by laser powder bed fusion. Additive Manufacturing Letters, 2021, 1, 100016.                               | 0.9 | 14        |
| 59 | Bone fragility via degradation of bone quality featured by collagen/apatite micro-arrangement in human rheumatic arthritis. Bone, 2022, 155, 116261.                                                                           | 1.4 | 14        |
| 60 | EFFECTS OF APPLIED STRESS ON PREFERENTIAL ALIGNMENT OF BIOLOGICAL APATITE IN RABBIT FORELIMB BONES. Phosphorus Research Bulletin, 2004, 17, 77-82.                                                                             | 0.1 | 13        |
| 61 | Comparison of Phase Characteristics and Residual Stresses in Ti-6Al-4V Alloy Manufactured by Laser<br>Powder Bed Fusion (L-PBF) and Electron Beam Powder Bed Fusion (EB-PBF) Techniques. Crystals, 2021,<br>11, 796.           | 1.0 | 13        |
| 62 | Octacalcium phosphate crystals including a higher density dislocation improve its materials osteogenecity. Applied Materials Today, 2022, 26, 101279.                                                                          | 2.3 | 13        |
| 63 | Early Initiation of Endochondral Ossification of Mouse Femur Cultured in Hydrogel with Different<br>Mechanical Stiffness. Tissue Engineering - Part C: Methods, 2015, 21, 567-575.                                             | 1.1 | 12        |
| 64 | Crystallographic Texture Formation of Beta-type Ti-15Mo-5Zr-3Al Alloy Through Selective Laser<br>Melting. Journal of Smart Processing, 2018, 7, 229-232.                                                                       | 0.0 | 12        |
| 65 | Combined effect of teriparatide and an anti-RANKL monoclonal antibody on bone defect regeneration in mice with glucocorticoid-induced osteoporosis. Bone, 2020, 139, 115525.                                                   | 1.4 | 11        |
| 66 | Fabrication of Ti-Alloy Powder/Solid Composite with Uniaxial Anisotropy by Introducing<br>Unidirectional Honeycomb Structure via Electron Beam Powder Bed Fusion. Crystals, 2021, 11, 1074.                                    | 1.0 | 11        |
| 67 | Crystallographic Approach to Regenerated and Pathological Hard Tissues. Materials Science Forum, 2006, 512, 255-260.                                                                                                           | 0.3 | 10        |
| 68 | Preferential orientation of biological apatite crystallite in original, regenerated and diseased cortical bones. Journal of the Ceramic Society of Japan, 2008, 116, 313-315.                                                  | 0.5 | 10        |
| 69 | Nonâ€surgical model for alveolar bone regeneration by bone morphogenetic proteinâ€2/7 gene therapy.<br>Journal of Periodontology, 2018, 89, 85-92.                                                                             | 1.7 | 10        |
| 70 | Impaired bone quality characterized by apatite orientation under stress shielding following fixing of<br>a fracture of the radius with a 3D printed Ti-6Al-4V custom-made bone plate in dogs. PLoS ONE, 2020, 15,<br>e0237678. | 1.1 | 10        |
| 71 | Reduction of Spatter Generation Using Atmospheric Gas in Laser Powder Bed Fusion of Ti–6Al–4V.<br>Materials Transactions, 2021, 62, 1225-1230.                                                                                 | 0.4 | 10        |
| 72 | Additive Manufacturing of Titanium and Titanium-based Alloys. Materia Japan, 2019, 58, 181-187.                                                                                                                                | 0.1 | 10        |

| #  | Article                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Variation in Bone Quality during Regenerative Process. Materials Science Forum, 2007, 539-543, 675-680.                                                                                         | 0.3 | 9         |
| 74 | In vitro engineering of transitional tissue by patterning and functional control of cells in fibrin gel.<br>Soft Matter, 2010, 6, 1662.                                                         | 1.2 | 9         |
| 75 | Chronological histological changes during bone regeneration on a non-crosslinked atelocollagen matrix. Journal of Bone and Mineral Metabolism, 2012, 30, 638-650.                               | 1.3 | 9         |
| 76 | ONO-1301 loaded nanocomposite scaffolds modulate cAMP mediated signaling and induce new bone formation in critical sized bone defect. Biomaterials Science, 2020, 8, 884-896.                   | 2.6 | 9         |
| 77 | Hypermineralization of Hearing-Related Bones by a Specific Osteoblast Subtype. Journal of Bone and<br>Mineral Research, 2020, 36, 1535-1547.                                                    | 3.1 | 9         |
| 78 | Orientation of Biological Apatite in Rat Calvaria Analyzed by Microbeam X-Ray Diffractometer.<br>Materials Science Forum, 2010, 638-642, 576-581.                                               | 0.3 | 8         |
| 79 | Promoting Effect of Basic Fibroblast Growth Factor in Synovial Mesenchymal Stem Cell-Based<br>Cartilage Regeneration. International Journal of Molecular Sciences, 2021, 22, 300.               | 1.8 | 8         |
| 80 | Fabrication and Characterization of Porous Implant Products with Aligned Pores by EBM Method for<br>Biomedical Application. Advanced Materials Research, 0, 409, 142-145.                       | 0.3 | 7         |
| 81 | Preferential Orientation of Collagen/Biological Apatite in Growing Rat Ulna under an Artificial<br>Loading Condition. Materials Transactions, 2013, 54, 1257-1261.                              | 0.4 | 6         |
| 82 | The combined effects of teriparatide and anti-RANKL monoclonal antibody on bone defect regeneration in ovariectomized mice. Bone, 2020, 130, 115077.                                            | 1.4 | 6         |
| 83 | Modified Cellular Automaton Simulation of Metal Additive Manufacturing. Materials Transactions, 2021, 62, 864-870.                                                                              | 0.4 | 6         |
| 84 | Overexpression of Fam20C in osteoblast in vivo leads to increased cortical bone formation and osteoclastic bone resorption. Bone, 2020, 138, 115414.                                            | 1.4 | 6         |
| 85 | Texture of Biological Apatite Crystallites and the Related Mechanical Function in Regenerated and Pathological Hard Tissues. Journal of Hard Tissue Biology, 2005, 14, 363-364.                 | 0.2 | 6         |
| 86 | Outstanding in vivo mechanical integrity of additively manufactured spinal cages with a novel<br>"honeycomb tree structure―design via guiding bone matrix orientation. Spine Journal, 2022, , . | 0.6 | 6         |
| 87 | Texture of Biological Apatite Crystallites and the Related Mechanical Function in Regenerated and Pathological Hard Tissues. Journal of Hard Tissue Biology, 2005, 14, 253-254.                 | 0.2 | 5         |
| 88 | Stress Simulation and Related Bone Ingrowth in Grooves on Implant Surface. Materials Science<br>Forum, 2010, 638-642, 664-669.                                                                  | 0.3 | 5         |
| 89 | Solid/Powder Clad Ti-6Al-4V Alloy with Low Young's Modulus and High Toughness Fabricated by Electron Beam Melting. Materials Transactions, 2015, 56, 755-758.                                   | 0.4 | 5         |
| 90 | Crystallographic Texture Formation of Pure Tantalum by Selective Laser Melting Method. Journal of Smart Processing, 2019, 8, 151-154.                                                           | 0.0 | 5         |

| #   | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Low magnetic field promotes recombinant human BMP-2-induced bone formation and influences orientation of trabeculae and bone marrow-derived stromal cells. Bone Reports, 2021, 14, 100757.                                                                                                    | 0.2 | 5         |
| 92  | Change in Material and Structural Parameters of Bone Mechanical Function during Long-Bone<br>Regeneration. Materials Science Forum, 2007, 561-565, 1451-1454.                                                                                                                                 | 0.3 | 4         |
| 93  | Quantity and Quality of Regenerated Bone in Grooves Aligned at Different Angles from the Implant<br>Surface. Materials Science Forum, 2010, 654-656, 2241-2244.                                                                                                                               | 0.3 | 4         |
| 94  | Advanced Analysis and Control of Bone Microstructure Based on a Materials Scientific Study<br>Including Microbeam X-ray Diffraction. , 2013, , 155-167.                                                                                                                                       |     | 4         |
| 95  | Development of Single Crystalline Bone Plate with Low Young's Modulus Using Beta-type<br>Ti-15Mo-5Zr-3Al Alloy. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2015, 101, 501-505.                                                                                         | 0.1 | 4         |
| 96  | Effect of Oxygen Concentration on the Generation of Spatter during Fabrication via Selective Laser<br>Melting. Journal of Smart Processing, 2019, 8, 102-105.                                                                                                                                 | 0.0 | 4         |
| 97  | Analysis of Bone Regeneration Based on the Relationship between the Orientations of Collagen and<br>Apatite in Mouse Femur. Materials Transactions, 2020, 61, 381-386.                                                                                                                        | 0.4 | 4         |
| 98  | Combination treatment with ibandronate and eldecalcitol prevents osteoporotic bone loss and deterioration of bone quality characterized by nano-arrangement of the collagen/apatite in an ovariectomized aged rat model. Bone, 2022, 157, 116309.                                             | 1.4 | 4         |
| 99  | Analysis of Osteocyte Morphology in Terms of Sensation of <i>In Vivo</i><br>Stress Applied on Bone. Materials Science Forum, 0, 783-786, 1265-1268.                                                                                                                                           | 0.3 | 3         |
| 100 | Assessment of the functional efficacy of root canal treatment with high-frequency waves in rats.<br>PLoS ONE, 2020, 15, e0239660.                                                                                                                                                             | 1.1 | 3         |
| 101 | Micro―and nanoâ€bone analyses of the human mandible coronoid process and tendonâ€bone entheses.<br>Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 2799-2806.                                                                                              | 1.6 | 3         |
| 102 | Superior Alignment of Human iPSC-Osteoblasts Associated with Focal Adhesion Formation Stimulated by Oriented Collagen Scaffold. International Journal of Molecular Sciences, 2021, 22, 6232.                                                                                                  | 1.8 | 3         |
| 103 | Structural characteristics of the bone surrounding dental implants placed into the tail-suspended mice. International Journal of Implant Dentistry, 2021, 7, 89.                                                                                                                              | 1.1 | 3         |
| 104 | Formation of New Bone with Preferentially Oriented Biological Apatite Crystals Using Novel<br>Cylindrical Implant Containing Anisotropic Open Pores Fabricated by Electron Beam Melting (EBM)<br>Method. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2010, 96, 572-578. | 0.1 | 3         |
| 105 | Single Crystal Growth and its Microstructure in Co-Cr-Mo Alloys for Biomedical Applications.<br>Materials Science Forum, 0, 706-709, 561-565.                                                                                                                                                 | 0.3 | 2         |
| 106 | Bone Loss and Degradation of Bone Quality in the Human Femur after Total Hip Arthroplasty under<br>Stress-Shielding by Titanium-Based Implant. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of<br>Metals, 2012, 76, 468-473.                                                       | 0.2 | 2         |
| 107 | Control of Oriented Extracellular Matrix Similar to Anisotropic Bone Microstructure. Materials Science Forum, 0, 783-786, 72-77.                                                                                                                                                              | 0.3 | 2         |
| 108 | Influence of Implant Neck Design on Bone Formation Under Mechanical Repetitive Loading. Implant Dentistry, 2016, 25, 171-178.                                                                                                                                                                 | 1.7 | 2         |

| #   | Article                                                                                                                                                                                                                                                                                                         | IF                 | CITATIONS               |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------------|
| 109 | Design of the Next Generation Metallic Biomaterials. Materia Japan, 2017, 56, 584-588.                                                                                                                                                                                                                          | 0.1                | 2                       |
| 110 | Effects of Autogenous Bone Graft on Mass and Quality of Trabecular Bone in Ti–6Al–4V Spinal Cage<br>Fabricated with Electron Beam Melting. Materials Transactions, 2019, 60, 144-148.                                                                                                                           | 0.4                | 2                       |
| 111 | Authors' Response to Letter from Professor Birkedal. Calcified Tissue International, 2022, 110, 144-145.                                                                                                                                                                                                        | 1.5                | 2                       |
| 112 | Creation of Anisotropic Properties by Morphology and Microstructure Control in the Additive Manufactured Metallic Materials. Materia Japan, 2018, 57, 145-149.                                                                                                                                                  | 0.1                | 2                       |
| 113 | Effects of Recrystallization on Tensile Anisotropic Properties for IN738LC Fabricated by Laser Powder<br>Bed Fusion. Crystals, 2022, 12, 842.                                                                                                                                                                   | 1.0                | 2                       |
| 114 | A Novel Ex Vivo Bone Culture Model for Regulation of Collagen/Apatite Preferential Orientation by<br>Mechanical Loading. International Journal of Molecular Sciences, 2022, 23, 7423.                                                                                                                           | 1.8                | 2                       |
| 115 | Evaluation of Mechanical Properties of Regenerated Bone by Nanoindentation Technique. Materials<br>Science Forum, 2010, 654-656, 2220-2224.                                                                                                                                                                     | 0.3                | 1                       |
| 116 | Formation of Crystallographic Orientation of Bone Apatite Crystallites Investigated by<br>Powder-Metallurgical Method and Development of Novel Bone Implant Focusing on Apatite<br>Orientation. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder<br>Metallurgy. 2015, 62, 580-586. | 0.1                | 1                       |
| 117 | Biological Apatite Crystallite Alignment Analysis of Human Maxillary Molar Region Cortical Bone<br>with Microbeam X-ray Diffraction. Journal of Hard Tissue Biology, 2016, 25, 109-114.                                                                                                                         | 0.2                | 1                       |
| 118 | Control of crystallographic orientation by metal additive manufacturing process of β-type Ti alloys based on the bone tissue anisotropy. MATEC Web of Conferences, 2020, 321, 05002.                                                                                                                            | 0.1                | 1                       |
| 119 | Micro/nanostructural Characteristic Changes in the Mandibles of Rats after Injection of Botulinum<br>Neurotoxin. Journal of Hard Tissue Biology, 2021, 30, 183-192.                                                                                                                                             | 0.2                | 1                       |
| 120 | Effect of Atmosphere Gas on Microstructure in Products of 316L Au stenitic Stainless Steel Fabricated<br>by Laser Powder Bed Fusionï¼^LPBF). Journal of Smart Processing, 2021, 10, 230-234.                                                                                                                    | 0.0                | 1                       |
| 121 | ãf¬ãf¼ã,¶ç²‰æœ«åºŠæº¶èžçµůîæ³ıã«ã,^ã,‹åºŽé›»æ€§ææ–™ãïã⊷ã┥ã®éŠ…åî金ã®é€å½⊄. Journal of Smart F                                                                                                                                                                                                                    | Proœœing           | , 2 <b>0</b> 21, 10, 26 |
| 122 | 金属 3D ãf—ãfªãf³ãf†ã,£ãf³ã,°ã«ã,ˆã,‹è¡¨é¢æ§‹é€å^¶å¾¡ãĩãã,Œã«åŸºã¥ãå¹¹ç″°èfžå^¶å¾¡. Journal of Smart P                                                                                                                                                                                                            | ro <b>œs</b> sing, | 2021, 10, 26            |
| 123 | Design of Biomaterials for Bone Replacement Based on Parameters Determining Bone Quality. , 2012, , 55-65.                                                                                                                                                                                                      |                    | 1                       |
| 124 | Crystallographic Texture Control of Beta-type Ti-alloys through Additive Manufacturing for<br>Suppression of Stress Shielding on Bone. Journal of Smart Processing, 2019, 8, 119-123.                                                                                                                           | 0.0                | 1                       |
| 125 | Development of Ultrahigh Corrosion Resistant Metallic Materials ―Improvement of Corrosion<br>Resistance of Martensitic Stainless Steel by Selective Laser Melting Process―. Materia Japan, 2020, 59,<br>679-684.                                                                                                | 0.1                | 1                       |
| 126 | Periodontal Tissue as a Biomaterial for Hard-Tissue Regeneration following bmp-2 Gene Transfer.<br>Materials, 2022, 15, 993.                                                                                                                                                                                    | 1.3                | 1                       |

| #   | Article                                                                                                                                                                                                                                                                                            | IF                  | CITATIONS      |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|
| 127 | Ibandronate Suppresses Changes in Apatite Orientation and Young's Modulus Caused by Estrogen<br>Deficiency in Rat Vertebrae. Calcified Tissue International, 2022, 110, 736-745.                                                                                                                   | 1.5                 | 1              |
| 128 | Evaluation of the Microstructural Characteristics of Bone Surrounding Anchor Screws Placed<br>under a Horizontal Load by Exploring the Orientation of Biological Apatite Crystals and Collagen<br>Fiber Anisotropy. Journal of Hard Tissue Biology, 2022, 31, 79-86.                               | 0.2                 | 1              |
| 129 | Progresses of Additive Manufacturing and Elementary Knowledge of Laser Beam Powder Bed Fusion.<br>Journal of Smart Processing, 2021, 10, 131-136.                                                                                                                                                  | 0.0                 | 1              |
| 130 | Evaluation of Bone Quality near Metallic Implants with and without Lotus-Type Pores for Optimal<br>Biomaterial Design. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2007, 71, 432-438.                                                                                       | 0.2                 | 0              |
| 131 | Two-Dimensional Quantitative Analysis of Preferential Alignment of Biological Apatite c-axis for<br>Isolated Human Trabecular Bone Using Microbeam X-ray Diffractometer with a Transmission Optical<br>System. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2008, 72, 57-62. | 0.2                 | Ο              |
| 132 | Evaluation and Control of Crystallographic Alignment of Biological Apatite Crystallites in Bones.<br>Materials Science Forum, 2010, 654-656, 2212-2215.                                                                                                                                            | 0.3                 | 0              |
| 133 | Control of Osteoblastic Cell Behavior by Surface Topography Introduced by Plastic Deformation of Ti<br>Single Crystal with h.c.p. Structure. Materials Science Forum, 0, 706-709, 549-552.                                                                                                         | 0.3                 | Ο              |
| 134 | Regeneration of Bone Mass and Bone Quality around Implant with Grooves for Aligning Bone Cells in<br>Rabbit Hindlimb Bones. Materials Science Forum, 0, 706-709, 510-513.                                                                                                                          | 0.3                 | 0              |
| 135 | Control of "Material Parameters" and "Structural Parameters" for<br>Anisotropic and Customized Design. Materia Japan, 2015, 54, 502-504.                                                                                                                                                           | 0.1                 | 0              |
| 136 | Delight Assessment of Anisotropic Custom Plate. Materia Japan, 2015, 54, 515-516.                                                                                                                                                                                                                  | 0.1                 | 0              |
| 137 | An Approach to Creation of Innovation Styles for Anisotropic and Customized Design and Manufacture. Materia Japan, 2015, 54, 519-521.                                                                                                                                                              | 0.1                 | Ο              |
| 138 | Control of Morphological and Microstructural Anisotropy through Powder-Based Metal Additive<br>Manufacturing. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder<br>Metallurgy, 2017, 64, 259-264.                                                                      | 0.1                 | 0              |
| 139 | A paradigm shift for bone quality in prosthetic dentistry. Annals of Japan Prosthodontic Society, 2018, 10, 1-15.                                                                                                                                                                                  | 0.0                 | Ο              |
| 140 | Design and Development of Intervertebral Fusion Cage with Novel Concept by Metal Powder-Based<br>Additive Manufacturing. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and<br>Powder Metallurgy, 2018, 65, 132-134.                                                           | 0.1                 | 0              |
| 141 | ãf¬ãf¼ã,¶ç²‰æœ«åºŠæº¶èžçµå•法ã«ã, ã,Šä½œè£½ã⊷㟠Ti-15Mo-5Zr-3Al å•金試料ã«ãŠã'ã,‹æ®‹ç•™                                                                                                                                                                                                                  | ⁴å¿ <b>œåŠ</b> >ã•ã | ă,1ã¢ãf£ãf3â,1 |
| 142 | Modified Cellular Automaton Simulation of Metal Additive Manufacturing. Nippon Kinzoku<br>Gakkaishi/Journal of the Japan Institute of Metals, 2021, 85, 103-109.                                                                                                                                   | 0.2                 | 0              |
| 143 | 7B34 Evaluation of apatite orientation as a bone quality parameter in regenerative and diseased bone and the related mechanical property The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2012, 2012.24, _7B34-17B34-2                                                 | 0.0                 | 0              |
| 144 | 10th Year as a Researcher. Zairyo/Journal of the Society of Materials Science, Japan, 2017, 66, 442.                                                                                                                                                                                               | 0.1                 | 0              |

| #   | Article                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Forefront in Biomedical Materials. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 798-803.       | 0.1 | 0         |
| 146 | Title is missing!. , 2020, 16, e1008586.                                                                               |     | 0         |
| 147 | Title is missing!. , 2020, 16, e1008586.                                                                               |     | Ο         |
| 148 | Title is missing!. , 2020, 16, e1008586.                                                                               |     | 0         |
| 149 | Title is missing!. , 2020, 16, e1008586.                                                                               |     | 0         |
| 150 | Title is missing!. , 2020, 16, e1008586.                                                                               |     | 0         |
| 151 | Title is missing!. , 2020, 16, e1008586.                                                                               |     | 0         |
| 152 | Title is missing!. , 2020, 15, e0237678.                                                                               |     | 0         |
| 153 | Title is missing!. , 2020, 15, e0237678.                                                                               |     | 0         |
| 154 | Title is missing!. , 2020, 15, e0237678.                                                                               |     | 0         |
| 155 | Title is missing!. , 2020, 15, e0237678.                                                                               |     | Ο         |
| 156 | Assessment of the functional efficacy of root canal treatment with high-frequency waves in rats. , 2020, 15, e0239660. |     | 0         |
| 157 | Assessment of the functional efficacy of root canal treatment with high-frequency waves in rats. , 2020, 15, e0239660. |     | Ο         |
| 158 | Assessment of the functional efficacy of root canal treatment with high-frequency waves in rats. , 2020, 15, e0239660. |     | 0         |
| 159 | Assessment of the functional efficacy of root canal treatment with high-frequency waves in rats. , 2020, 15, e0239660. |     | 0         |
| 160 | Assessment of the functional efficacy of root canal treatment with high-frequency waves in rats. , 2020, 15, e0239660. |     | 0         |
| 161 | Assessment of the functional efficacy of root canal treatment with high-frequency waves in rats. , 2020, 15, e0239660. |     | 0         |