
Giorgio Sberveglieri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7219577/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective H2S gas sensors based on ohmic hetero-interface of Au-functionalized WO3 nanowires. Applied Surface Science, 2022, 571, 151262.	6.1	49
2	Origin of Baseline Drift in Metal Oxide Gas Sensors: Effects of Bulk Equilibration. Chemosensors, 2022, 10, 171.	3.6	10
3	Highly sensitive and selective detection of dimethylamine through Nb-doping of TiO2 nanotubes for potential use in seafood quality control. Sensors and Actuators B: Chemical, 2020, 303, 127217.	7.8	46
4	UV-Enhanced Humidity Sensing of Chitosan–SnO2 Hybrid Nanowires. Nanomaterials, 2020, 10, 329.	4.1	13
5	k-NN and k-NN-ANN Combined Classifier to Assess MOX Gas Sensors Performances Affected by Drift Caused by Early Life Aging. Chemosensors, 2020, 8, 6.	3.6	7
6	Nanostructured MOS Sensor for the Detection, Follow up, and Threshold Pursuing of Campylobacter Jejuni Development in Milk Samples. Sensors, 2020, 20, 2009.	3.8	13
7	An Array of MOX Sensors and ANNs to Assess Grated Parmigiano Reggiano Cheese Packs' Compliance with CFPR Guidelines. Biosensors, 2020, 10, 47.	4.7	7
8	Investigation of Reduced Graphene Oxide and a Nb-Doped TiO ₂ Nanotube Hybrid Structure To Improve the Gas-Sensing Response and Selectivity. ACS Sensors, 2019, 4, 2094-2100.	7.8	47
9	MOX Sensors to Ensure Suitable Parameters of Grated Parmigiano Reggiano Cheese. Proceedings (mdpi), 2019, 14, 38.	0.2	2
10	Array of MOX Nanowire Gas Sensors for Wastewater Management. Proceedings (mdpi), 2018, 2, .	0.2	2
11	Discrimination of Quality and Geographical Origin of Extra Virgin Olive Oil by S3 Device with Metal Oxides Gas Sensors. Proceedings (mdpi), 2018, 2, .	0.2	10
12	Sensitivity-Selectivity Trade-Offs in Surface Ionization Gas Detection. Nanomaterials, 2018, 8, 1017.	4.1	5
13	Multicomponent Metal Oxide Nanostructures: Fabrication and Study of Core Issues to Improve Gas Sensing Performance. Proceedings (mdpi), 2018, 2, .	0.2	0
14	Real-Time Microwave, Dielectric, and Optical Sensing of Lincomycin and Tylosin Antibiotics in Water: Sensor Fusion for Environmental Safety. Journal of Sensors, 2018, 2018, 1-11.	1.1	17
15	Reduced Graphene Oxide–TiO ₂ Nanotube Composite: Comprehensive Study for Gas-Sensing Applications. ACS Applied Nano Materials, 2018, 1, 7098-7105.	5.0	51
16	Self-Test Procedures for Gas Sensors Embedded in Microreactor Systems. Sensors, 2018, 18, 453.	3.8	5
17	From Transparent Conducting Material to Gas-Sensing Application of SnO2:Sb Thin Films. Journal of Electronic Materials, 2018, 47, 5165-5173.	2.2	16
18	Metal Oxide Nanostructures in Food Applications: Quality Control and Packaging. Chemosensors, 2018, 6, 16.	3.6	83

#	Article	IF	CITATIONS
19	Application of a Novel S3 Nanowire Gas Sensor Device in Parallel with GC-MS for the Identification of Rind Percentage of Grated Parmigiano Reggiano. Sensors, 2018, 18, 1617.	3.8	25
20	Array of Semiconductor Nanowires Gas Sensor for IoT in Wastewater Management. , 2018, , .		8
21	Metal Oxide Nanowire Preparation and Their Integration into Chemical Sensing Devices at the SENSOR Lab in Brescia. Sensors, 2017, 17, 1000.	3.8	21
22	Hierarchically Assembled Titania Based Nanostructures: Innovative and Efficient Strategies for the Synthesis and the Improvement of Sensing Properties. Proceedings (mdpi), 2017, 1, 293.	0.2	1
23	A composite structure based on reduced graphene oxide and metal oxide nanomaterials for chemical sensors. Beilstein Journal of Nanotechnology, 2016, 7, 1421-1427.	2.8	34
24	A Novel MOS Nanowire Gas Sensor Device (S3) and GC-MS-Based Approach for the Characterization of Grated Parmigiano Reggiano Cheese. Biosensors, 2016, 6, 60.	4.7	20
25	ZnO Quasi-1D Nanostructures: Synthesis, Modeling, and Properties for Applications in Conductometric Chemical Sensors. Chemosensors, 2016, 4, 6.	3.6	36
26	Reduced graphene oxide/ZnO nanocomposite for application in chemical gas sensors. RSC Advances, 2016, 6, 34225-34232.	3.6	101
27	Kelvin probe as an effective tool to develop sensitive p-type CuO gas sensors. Sensors and Actuators B: Chemical, 2016, 222, 1257-1263.	7.8	34
28	A Player Often Neglected: Electrochemical Comprehensive Analysis of Counter Electrodes for Quantum Dot Solar Cells. ACS Applied Materials & Interfaces, 2016, 8, 7766-7776.	8.0	15
29	Conductance and Work Function of TiO 2 Nanotubes Based Gas Sensors. Procedia Engineering, 2015, 120, 769-772.	1.2	5
30	ZnO@SnO2 engineered composite photoanodes for dye sensitized solar cells. Scientific Reports, 2015, 5, 14523.	3.3	54
31	Niobium and Tungsten Oxide Nanowires for Chemical Sensor. Procedia Engineering, 2015, 120, 1149-1152.	1.2	0
32	Ultrathin Gas Permeable Oxide Membranes for Chemical Sensing: Nanoporous Ta2O5 Test Study. Materials, 2015, 8, 6677-6684.	2.9	7
33	Tungsten Oxide Nanowires on Micro Hotplates for Gas Sensing Applications. Procedia Engineering, 2015, 120, 439-442.	1.2	5
34	Highly conductive titanium oxide nanotubes chemical sensors. Microporous and Mesoporous Materials, 2015, 208, 165-170.	4.4	26
35	Nanostructured ZnO chemical gas sensors. Ceramics International, 2015, 41, 14239-14244.	4.8	193
36	Tailoring the textured surface of porous nanostructured NiO thin films for the detection of pollutant gases. Thin Solid Films, 2015, 583, 233-238.	1.8	43

#	Article	IF	CITATIONS
37	Fabrication of single-nanowire sensing devices by electron beam lithography. , 2015, , .		1
38	Room temperature trimethylamine gas sensor based on aqueous dispersed graphene. , 2015, , .		1
39	Large surface area biphase titania for chemical sensing. Sensors and Actuators B: Chemical, 2015, 209, 1091-1096.	7.8	26
40	Optical, Electrical, and Electromechanical Properties of Hybrid Graphene/Carbon Nanotube Films. Advanced Materials, 2015, 27, 3053-3059.	21.0	114
41	Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode. Optics Express, 2015, 23, 18937.	3.4	15
42	Si <scp>OCN</scp> Functionalized Carbon Nanotube Gas Sensors for Elevated Temperature Applications. Journal of the American Ceramic Society, 2015, 98, 1142-1149.	3.8	16
43	Nanostructures of Tungsten Trioxide, Nickel Oxide and Niobium Oxide for Chemical Sensing Applications. Procedia Engineering, 2015, 120, 803-806.	1.2	5
44	Nickel Oxide Nanowires Growth by VLS Technique for Gas Sensing Application. Procedia Engineering, 2015, 120, 760-763.	1.2	13
45	Tungsten oxide nanowires for chemical detection. Analytical Methods, 2015, 7, 2203-2209.	2.7	34
46	Graphene as transparent front contact for dye sensitized solar cells. Solar Energy Materials and Solar Cells, 2015, 135, 99-105.	6.2	40
47	Rapid diagnosis of Enterobacteriaceae in vegetable soups by a metal oxide sensor based electronic nose. Sensors and Actuators B: Chemical, 2015, 207, 1104-1113.	7.8	63
48	Graphene below the percolation threshold in TiO ₂ for dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 2580-2588.	10.3	70
49	Taurine Rescues Cisplatin-Induced Muscle Atrophy In Vitro: A Morphological Study. Oxidative Medicine and Cellular Longevity, 2014, 2014, 1-11.	4.0	19
50	Integration of ZnO and CuO nanowires into a thermoelectric module. Beilstein Journal of Nanotechnology, 2014, 5, 927-936.	2.8	27
51	Metal Oxide Gas Sensors Technologies for Hidden People Detection. , 2014, , .		0
52	Light harvester band gap engineering in excitonic solar cells: A case study on semiconducting quantum dots sensitized rainbow solar cells. Pure and Applied Chemistry, 2014, 86, 575-584.	1.9	4
53	Engineering metal oxide structures for efficient photovoltaic devices. Proceedings of SPIE, 2014, , .	0.8	0
54	Tungsten Oxide Nanowires Chemical Sensors. Procedia Engineering, 2014, 87, 696-699.	1.2	2

#	Article	IF	CITATIONS
55	P-type CuO Nanowires and thin Film for Highly Sensitive Kelvin Probe Gas Sensing Applications. Procedia Engineering, 2014, 87, 16-19.	1.2	5
56	Copper Oxide Nanowires for Surface Ionization Based Gas Sensor. Procedia Engineering, 2014, 87, 1023-1026.	1.2	13
57	Niobium Oxide Nanostructures for Chemical Sensing. Procedia Engineering, 2014, 87, 807-810.	1.2	1
58	Sequential physical vapor deposition and chemical vapor deposition for the growth of In2O3–SnO2 radial and longitudinal heterojunctions. Applied Surface Science, 2014, 323, 59-64.	6.1	7
59	Two-phase Titania Nanotubes for Gas Sensing. Procedia Engineering, 2014, 87, 176-179.	1.2	8
60	Gas Sensing Study of ZnO Nanowire Heterostructured with NiO for Detection of Pollutant Gases. Procedia Engineering, 2014, 87, 1091-1094.	1.2	9
61	Tailor-made ZnO@SnO2networks for high efficiency photovoltaic devices. , 2014, , .		1
62	Transparent front contact optimization in dye sensitized solar cells: use of cadmium stannate and titanium oxide by sputtering. Thin Solid Films, 2014, 555, 18-20.	1.8	9
63	Quantum dots as mediators in gas sensing: A case study of CdS sensitized WO3 sensing composites. Applied Surface Science, 2014, 290, 295-300.	6.1	5
64	Investigation of Seebeck Effect in ZnO Nanowires for Micropower Generation in Autonomous Sensor Systems. Lecture Notes in Electrical Engineering, 2014, , 245-249.	0.4	0
65	Synthesis of self-ordered and well-aligned Nb ₂ O ₅ nanotubes. CrystEngComm, 2014, 16, 10273-10279.	2.6	30
66	SiC Foams Decorated with SnO ₂ Nanostructures for Room Temperature Gas Sensing. International Journal of Applied Ceramic Technology, 2014, 11, 851-857.	2.1	9
67	Effect of Blocking Layer to Boost Photoconversion Efficiency in ZnO Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 11236-11244.	8.0	40
68	Synthesis and electrochemical study of a hybrid structure based on PDMS-TEOS and titania nanotubes for biomedical applications. Nanotechnology, 2014, 25, 365701.	2.6	9
69	Au/ε-Fe ₂ O ₃ Nanocomposites as Selective NO ₂ Gas Sensors. Journal of Physical Chemistry C, 2014, 118, 11813-11819.	3.1	81
70	Hierarchical self-assembled Cu2S nanostructures: Fast and reproducible spray deposition of effective counter electrodes for high efficiency quantum dot solar cells. Nano Energy, 2014, 6, 200-210.	16.0	47
71	Tailoring and Characterization of Porous hierarchical Nanostructured p Type Thin Film of Cu-Al-Oxide for the Detection of Pollutant Gases. Procedia Engineering, 2014, 87, 252-255.	1.2	1
72	High Carbon-high Porous SiOC Glasses for Room Temperature NO2 Sensing. Procedia Engineering, 2014, 87, 160-163.	1.2	5

5

#	Article	IF	CITATIONS
73	Array of Metal Oxide Nanostructures for Nerve Agent Detection and Food Quality. Sensor Letters, 2014, 12, 985-989.	0.4	1
74	Investigation of Seebeck Effect in Metal Oxide Nanowires for Powering Autonomous Microsystems. Lecture Notes in Electrical Engineering, 2014, , 3-7.	0.4	1
75	Hybrid Carbon Nanotubes–TiO ₂ Photoanodes for High Efficiency Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2013, 117, 14510-14517.	3.1	121
76	Spray-assisted silar deposition of cadmium sulphide quantum dots on metal oxide films for excitonic solar cells. Journal of Power Sources, 2013, 240, 736-744.	7.8	19
77	Thermally oxidized zinc oxide nanowires for use as chemical sensors. Nanotechnology, 2013, 24, 444008.	2.6	41
78	Plasma-induced enhancement of UV photoluminescence in ZnO nanowires. CrystEngComm, 2013, 15, 7981.	2.6	27
79	Synthesis of self-assembled chain-like ZnO nanostructures on stiff and flexible substrates. CrystEngComm, 2013, 15, 2881.	2.6	22
80	Metal oxide nanoscience and nanotechnology for chemical sensors. Sensors and Actuators B: Chemical, 2013, 179, 3-20.	7.8	153
81	Preparation of copper oxide nanowire-based conductometric chemical sensors. Sensors and Actuators B: Chemical, 2013, 182, 7-15.	7.8	58
82	TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties. Sensors, 2013, 13, 14813-14838.	3.8	173
83	Gas Sensing Behavior of Mesoporous <scp><scp>SiOC</scp> </scp> Glasses. Journal of the American Ceramic Society, 2013, 96, 2366-2369.	3.8	63
84	Metal oxide nanowire chemical and biochemical sensors. Journal of Materials Research, 2013, 28, 2911-2931.	2.6	22
85	Nanostructured Metal Oxide Gas Sensors, a Survey of Applications Carried out at SENSOR Lab, Brescia (Italy) in the Security and Food Quality Fields. Sensors, 2012, 12, 17023-17045.	3.8	68
86	Fabrication and investigation of gas sensing properties of Nb-doped TiO ₂ nanotubular arrays. Nanotechnology, 2012, 23, 235706.	2.6	51
87	Controlled synthesis and properties of \hat{l}^2 -Fe2O3 nanosystems functionalized with Ag or Pt nanoparticles. CrystEngComm, 2012, 14, 6469.	2.6	51
88	PDCs functionalized carbon nanostructure for gas sensing application. , 2012, , .		0
89	Growth and gas sensing properties of self-assembled chain-like ZnO nanostructures. , 2012, , .		1
90	Electrochemical fabrication of oriented ZnO nanorods on TiO _{2 nanotubes. International Journal of Nanotechnology, 2012, 9, 295.}	0.2	7

#	Article	IF	CITATIONS
91	Gas-Sensing Properties of Thermally-Oxidized Metal Oxide Nanowires. Procedia Engineering, 2012, 47, 430-433.	1.2	5
92	Zinc Oxide Nanowires Deposited on Polymeric Hotplates for Low-power Gas Sensors. Procedia Engineering, 2012, 47, 1137-1140.	1.2	12
93	Growth and Gas Sensing Properties of Self-Assembled Chain-Like ZnO Nanostructures. Procedia Engineering, 2012, 47, 762-765.	1.2	1
94	Exploitation of a low-cost electronic system, designed for low-conductance and wide-range measurements, to control metal oxide gas sensors with temperature profile protocols. Sensors and Actuators B: Chemical, 2012, 175, 149-156.	7.8	17
95	Fabrication of pure and Nb–TiO2 nanotubes and their functional properties. Journal of Alloys and Compounds, 2012, 536, S488-S490.	5.5	17
96	One-dimensional nanostructured oxides for thermoelectric applications and excitonic solar cells. Nano Energy, 2012, 1, 372-390.	16.0	41
97	Synthesis of WO3 Nanorod based Thin Films for Ethanol and H2 Sensing. Procedia Engineering, 2012, 47, 358-361.	1.2	19
98	Growth kinetics of CdSe quantum dots generated in polar polymers. Dalton Transactions, 2012, 41, 14354.	3.3	4
99	Co ₃ O ₄ /ZnO Nanocomposites: From Plasma Synthesis to Gas Sensing Applications. ACS Applied Materials & Interfaces, 2012, 4, 928-934.	8.0	141
100	Planar Thermoelectric Generator based on Metal-Oxide Nanowires for Powering Autonomous Microsystems. Procedia Engineering, 2012, 47, 346-349.	1.2	12
101	Chemometric Discrimination of Philippine Civet Coffee Using Electronic Nose and Gas Chromatography Mass Spectrometry. Procedia Engineering, 2012, 47, 977-980.	1.2	34
102	Functionalised zinc oxide nanowire gas sensors: Enhanced NO ₂ gas sensor response by chemical modification of nanowire surfaces. Beilstein Journal of Nanotechnology, 2012, 3, 368-377.	2.8	69
103	CuO/ZnO Nanocomposite Gas Sensors Developed by a Plasmaâ€Assisted Route. ChemPhysChem, 2012, 13, 2342-2348.	2.1	55
104	Metal Oxides Monoâ€Dimensional Nanostructures for Gas Sensing and Light Emission. Journal of the American Ceramic Society, 2012, 95, 831-850.	3.8	11
105	Sputtering deposition of amorphous cadmium stannate as transparent conducting oxide. Thin Solid Films, 2012, 520, 2739-2744.	1.8	11
106	Synthesis and integration of tin oxide nanowires into an electronic nose. Vacuum, 2012, 86, 532-535.	3.5	60
107	Flexible dye sensitized solar cells using TiO2 nanotubes. Energy and Environmental Science, 2011, 4, 3408.	30.8	67
108	The Power of Nanomaterial Approaches in Gas Sensors. Springer Series on Chemical Sensors and Biosensors, 2011, , 53-78.	0.5	0

7

#	Article	IF	CITATIONS
109	Electronic Noses As Flexible Tools For Evaluating Food Quality And Safety: Can We Trust Them?. , 2011, , .		1
110	Synthesis of the nanostructured WO3 via anodization at elevated temperature for H2 sensing applications. Procedia Engineering, 2011, 25, 247-251.	1.2	26
111	Copper oxide nanowires prepared by thermal oxidation for chemical sensing. Procedia Engineering, 2011, 25, 753-756.	1.2	23
112	Fabrication of TiO2 and TiO2 <nb> Nanotubular Arrays and Their Gas Sensing Properties. Procedia Engineering, 2011, 25, 757-760.</nb>	1.2	4
113	Gasochromic Performance of WO3 Nanorod Thin Films for Low Concentration H2 Sensing. Procedia Engineering, 2011, 25, 1065-1068.	1.2	9
114	Response dynamics of metal oxide gas sensors working with temperature profile protocols. Procedia Engineering, 2011, 25, 1173-1176.	1.2	6
115	Seebeck effect in ZnO nanowires for micropower generation. Procedia Engineering, 2011, 25, 1481-1484.	1.2	13
116	Metal-free organic sensitizers with a sterically hindered thiophene unit for efficient dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 13785.	6.7	54
117	TiO2 nanotubular and nanoporous arrays by electrochemical anodization on different substrates. RSC Advances, 2011, 1, 1038.	3.6	65
118	Novel Synthesis and Gas Sensing Performances of CuO–TiO ₂ Nanocomposites Functionalized with Au Nanoparticles. Journal of Physical Chemistry C, 2011, 115, 10510-10517.	3.1	133
119	Bovine Serum Albumin protofibril-like aggregates formation: Solo but not simple mechanism. Archives of Biochemistry and Biophysics, 2011, 508, 13-24.	3.0	84
120	Electronic nose predicts high and low fumonisin contamination in maize cultures. Food Research International, 2011, 44, 992-999.	6.2	44
121	On-line monitoring and active control of dye uptake in dye-sensitised solar cells. Chemical Communications, 2011, 47, 11656.	4.1	20
122	Surface-Driven Porphyrin Self-Assembly on Pre-Activated Si Substrates. Journal of Nanoscience and Nanotechnology, 2011, 11, 3235-3244.	0.9	1
123	Plasma enhanced-CVD of undoped and fluorine-doped Co3O4 nanosystems for novel gas sensors. Sensors and Actuators B: Chemical, 2011, 160, 79-86.	7.8	56
124	Vertically Aligned TiO ₂ Nanotubes on Plastic Substrates for Flexible Solar Cells. Small, 2011, 7, 2437-2442.	10.0	25
125	CdSe Spherical Quantum Dots Stabilised by Thiomalic Acid: Biphasic Wet Synthesis and Characterisation. ChemPhysChem, 2011, 12, 863-870.	2.1	9
126	Hierarchically Assembled ZnO Nanocrystallites for Highâ€Efficiency Dyeâ€6ensitized Solar Cells. Angewandte Chemie - International Edition, 2011, 50, 12321-12325.	13.8	223

#	Article	IF	CITATIONS
127	Cover Picture: Hierarchically Assembled ZnO Nanocrystallites for Highâ€Efficiency Dyeâ€Sensitized Solar Cells (Angew. Chem. Int. Ed. 51/2011). Angewandte Chemie - International Edition, 2011, 50, 12111-12111.	13.8	1
128	Structural and gas-sensing characterization of tungsten oxide nanorods and nanoparticles. Sensors and Actuators B: Chemical, 2011, 153, 340-346.	7.8	53
129	Hybrid thermal-field emission of ZnO nanowires. Applied Physics Letters, 2011, 99, .	3.3	11
130	Covariance Matrix Adaptation Evolutionary Strategy for Drift Correction of Electronic Nose Data. , 2011, , .		0
131	Pt/Nanostructured RuO ₂ /SiC Schottky Diode Based Hydrogen Gas Sensors. Sensor Letters, 2011, 9, 797-800.	0.4	4
132	One pot synthesis of bi-linker stabilised CdSe quantum dots. Journal of Physics: Conference Series, 2010, 245, 012067.	0.4	3
133	Synthesis of different ZnO nanostructures by modified PVD process and potential use for dye-sensitized solar cells. Materials Chemistry and Physics, 2010, 124, 694-698.	4.0	86
134	Synthesis of Cu2O bi-pyramids by reduction of Cu(OH)2 in solution. Materials Letters, 2010, 64, 469-471.	2.6	41
135	Physical Vapor Deposition of Copper Oxide Nanowires. Procedia Engineering, 2010, 5, 1051-1054.	1.2	2
136	A stability based validity method for fuzzy clustering. Pattern Recognition, 2010, 43, 1292-1305.	8.1	33
137	Reversed bias Pt/nanostructured ZnO Schottky diode with enhanced electric field for hydrogen sensingâ~†. Sensors and Actuators B: Chemical, 2010, 146, 507-512.	7.8	77
138	Analysis of the dynamic features of metal oxide sensors in response to SPME fiber gas release. Sensors and Actuators B: Chemical, 2010, 146, 539-544.	7.8	9
139	1D ZnO nano-assemblies by Plasma-CVD as chemical sensors for flammable and toxic gases. Sensors and Actuators B: Chemical, 2010, 149, 1-7.	7.8	169
140	Metal oxide nanowires as chemical sensors. Materials Today, 2010, 13, 36-44.	14.2	317
141	Vapor Phase Synthesis, Characterization and Gas Sensing Performances of Co ₃ O ₄ and Au/Co ₃ O ₄ Nanosystems. Journal of Nanoscience and Nanotechnology. 2010. 10. 8054-8061.	0.9	35
142	Direct integration of metal oxide nanowires into an effective gas sensing device. Nanotechnology, 2010, 21, 145502.	2.6	35
143	Insight into the Formation Mechanism of One-Dimensional Indium Oxide Wires. Crystal Growth and Design, 2010, 10, 140-145.	3.0	30
144	Electronic nose and Alicyclobacillus spp. spoilage of fruit juices: An emerging diagnostic tool. Food Control, 2010, 21, 1374-1382.	5.5	97

#	Article	IF	CITATIONS
145	Alicyclobacillus spp.: Detection in soft drinks by Electronic Nose. Food Research International, 2010, 43, 2108-2114.	6.2	53
146	Urchin-like ZnO nanorod arrays for gas sensing applications. CrystEngComm, 2010, 12, 3419.	2.6	90
147	Nanomaterials for Chemical Sensing Technologies. Journal of Sensors, 2009, 2009, 1-2.	1.1	5
148	XPS Characterisation of Vacuum Annealed Nanocrystalline WO3 Films. E-Journal of Surface Science and Nanotechnology, 2009, 7, 319-322.	0.4	8
149	ZnO / TiO 2 nanonetwork as efficient photoanode in excitonic solar cells. Applied Physics Letters, 2009, 95, .	3.3	39
150	Integration of metal oxide nanowires in dye sensitized solar cells. , 2009, , .		0
151	SnO <inf>2</inf> nanowires for optical and optoelectronic gas sensing. , 2009, , .		1
152	SnO <inf>2</inf> nanowires for detection of chemical warfare agents. , 2009, , .		0
153	Chemical Vapor Deposition of Cu <inf>2</inf> O and CuO nanosystems for innovative gas sensors. , 2009, , .		3
154	Gas Sensing Performances of Copper Oxide Films and Quasi 1-D Nanoarchitectures. , 2009, , .		0
155	Metal Oxide Nanowires As Promising Materials For Miniaturised Electronic Noses. , 2009, , .		0
156	Cluster Analysis of the Rat Olfactory Bulb Activity in Response to Different Odorants. , 2009, , .		0
157	Featuring Of Odor By Metal Oxide Sensor Response To Varying Gas Mixture. , 2009, , .		1
158	Reverse Biased Schottky Contact Hydrogen Sensors Based on Ptâ^•nanostructured ZnOâ^•SiC. , 2009, , .		2
159	Multi-Functional Copper Oxide Nanosystems for H2 Sustainable Production and Sensing. ECS Transactions, 2009, 25, 1169-1176.	0.5	13
160	Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films. Thin Solid Films, 2009, 517, 2775-2780.	1.8	172
161	Semiconducting tin oxide nanowires and thin films for Chemical Warfare Agents detection. Thin Solid Films, 2009, 517, 6156-6160.	1.8	46
162	Luminescence response of ZnO nanowires to gas adsorption. Sensors and Actuators B: Chemical, 2009, 140, 461-466.	7.8	65

#	Article	IF	CITATIONS
163	Chemical vapor deposition of copper oxide films and entangled quasi-1D nanoarchitectures as innovative gas sensors. Sensors and Actuators B: Chemical, 2009, 141, 270-275.	7.8	114
164	Metal oxide nanowires: Preparation and application in gas sensing. Journal of Molecular Catalysis A, 2009, 305, 170-177.	4.8	57
165	Quasi-one dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Progress in Materials Science, 2009, 54, 1-67.	32.8	582
166	Early detection of microbial contamination in processed tomatoes by electronic nose. Food Control, 2009, 20, 873-880.	5.5	127
167	Differentiation of the volatile profile of microbiologically contaminated canned tomatoes by dynamic headspace extraction followed by gas chromatography–mass spectrometry analysis. Talanta, 2009, 77, 962-970.	5.5	33
168	Electronic Nose: A Promising Tool For Early Detection Of Alicyclobacillus spp In Soft Drinks. , 2009, , .		1
169	Electrical-Based Gas Sensing. , 2009, , 1-61.		9
170	Surface Ionization Gas Detection on Platinum and Metal Oxide Surfaces. IEEE Sensors Journal, 2009, 9, 1727-1733.	4.7	33
171	Nanowires of metal oxides for gas sensing applications. Surface and Interface Analysis, 2008, 40, 575-578.	1.8	31
172	Orthorhombic Pbcn SnO2 nanowires for gas sensing applications. Journal of Crystal Growth, 2008, 310, 253-260.	1.5	49
173	Bread baking aromas detection by low-cost electronic nose. Sensors and Actuators B: Chemical, 2008, 130, 100-104.	7.8	39
174	Catalytic enhancement of SnO2 gas sensors as seen by the moving gas outlet method. Sensors and Actuators B: Chemical, 2008, 130, 193-199.	7.8	25
175	Optical sensing of NO2 in tin oxide nanowires at sub-ppm level. Sensors and Actuators B: Chemical, 2008, 130, 391-395.	7.8	27
176	Inverse opal gas sensors: Zn(II)-doped tin dioxide systems for low temperature detection of pollutant gases. Sensors and Actuators B: Chemical, 2008, 130, 567-573.	7.8	40
177	Random forests and nearest shrunken centroids for the classification of sensor array data. Sensors and Actuators B: Chemical, 2008, 131, 93-99.	7.8	43
178	Exploratory data analysis for industrial safety application. Sensors and Actuators B: Chemical, 2008, 131, 100-109.	7.8	29
179	Effects of aluminium sulphate in the mouse liver: Similarities to the aging process. Experimental Gerontology, 2008, 43, 330-338.	2.8	20
180	Metal Oxide Nanowire and Thin-Film-Based Gas Sensors for Chemical Warfare Simulants Detection. IEEE Sensors Journal, 2008, 8, 735-742.	4.7	54

IF # ARTICLE CITATIONS On the mechanism of photoluminescence quenching in tin dioxide nanowires by NO₂adsorption. New Journal of Physics, 2008, 10, 043013. Preparation of transparent conducting oxide nanostructures for dye-sensitized solar cells. 182 0.0 0 Conference Record of the IEEE Photovoltaic Specialists Conference, 2008, , . Gas Sensing Properties of Columnar CeO2 Nanostructures Prepared by Chemical Vapor Deposition. Journal of Nanoscience and Nanotechnology, 2008, 8, 1012-1016. Light Emission Properties of SnO<SUB>2</SUB> Nanowires for Applications in Gas Sensing. 184 0.4 1 Sensor Letters, 2008, 6, 596-600. Metal oxide nanowires for biochemical gas sensing., 2007, , . Single crystalline metal oxide nano-wires/tubes: controlled growth for sensitive gas sensor devices. , 186 0 2007,,. Gas sensing properties of CNT-SnO<inf>2</inf> Nanocomposite Thin Film Prepared by E-beam 4 Evaporation., 2007, , . Metal oxide nanowires for optical gas sensing. , 2007, 6474, 212. 188 1 Single crystal ZnO nanowires as optical and conductometric chemical sensor. Journal Physics D: 2.8 Applied Physics, 2007, 40, 7255-7259. 190 SnO<inf>2</inf> nanowire bio-transistor for electrical DNA sensing., 2007, ... 1 TiO2 Based Nanocrystalline Thin Film Gas Sensors Prepared by Ion-assisted Electron beam Evaporation. 191 Tin, Niobium and Vanadium mixed oxide thin films based gas sensors for chemical warfare agent 192 0 attacks prevention., 2007,,. Dissociative Gas Sensing at Metal Oxide Surfaces. IEEE Sensors Journal, 2007, 7, 1675-1679. Controlled Growth and Sensing Properties of In₂O₃ Nanowires. Crystal 194 3.0 130 Growth and Design, 2007, 7, 2500-2504. Gas Sensing Properties of Hydrogenated Amorphous Silicon Films. IEEE Sensors Journal, 2007, 7, 1506-1512. Pt/SnO<inf>2</inf> Nanowires/SiC Based Hydrogen Gas Sensor., 2007, , . 196 1 Preparation and Characterization of Tin Oxide Nanowires on SIC., 2007, , . A New Low-Cost Electronic System to Manage Resistive Sensors for Gas Detection. IEEE Sensors 198 Journal, 2007, 7, 1073-1077.

GIORGIO SBERVEGLIERI

4.7 30

#	Article	IF	CITATIONS
199	Preparation of Radial and Longitudinal Nanosized Heterostructures of In ₂ O ₃ and SnO ₂ . Nano Letters, 2007, 7, 3553-3558.	9.1	56
200	Columnar CeO2nanostructures for sensor application. Nanotechnology, 2007, 18, 125502.	2.6	92
201	First Example of ZnOâ^'TiO ₂ Nanocomposites by Chemical Vapor Deposition:  Structure, Morphology, Composition, and Gas Sensing Performances. Chemistry of Materials, 2007, 19, 5642-5649.	6.7	164
202	STM and XPS characterisation of vacuum annealed nanocrystalline WO3 films. Surface Science, 2007, 601, 4953-4957.	1.9	49
203	In2O3 nanowires for gas sensors: morphology and sensing characterisation. Thin Solid Films, 2007, 515, 8356-8359.	1.8	81
204	Pd- and Ca-doped iron oxide for ethanol vapor sensing. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 139, 41-47.	3.5	34
205	Electrical and holographic characterization of gold catalyzed titania-based layers. Journal of the European Ceramic Society, 2007, 27, 4131-4134.	5.7	4
206	Comparing the performance of different features in sensor arrays. Sensors and Actuators B: Chemical, 2007, 123, 437-443.	7.8	47
207	Synthesis and characterization of semiconducting nanowires for gas sensing. Sensors and Actuators B: Chemical, 2007, 121, 208-213.	7.8	163
208	Cluster validation for electronic nose data. Sensors and Actuators B: Chemical, 2007, 125, 596-606.	7.8	17
209	Cr-inserted TiO2 thin films for chemical gas sensors. Sensors and Actuators B: Chemical, 2007, 128, 312-319.	7.8	44
210	Gas sensing properties of zinc oxide nanostructures prepared by thermal evaporation. Applied Physics A: Materials Science and Processing, 2007, 88, 45-48.	2.3	31
211	Functional nanowires of tin oxide. Applied Physics A: Materials Science and Processing, 2007, 89, 73-76.	2.3	17
212	Defect study of SnO2 nanostructures by cathodoluminescence analysis: Application to nanowires. Sensors and Actuators B: Chemical, 2007, 126, 6-12.	7.8	93
213	Gas response times of nano-scale SnO2 gas sensors as determined by the moving gas outlet technique. Sensors and Actuators B: Chemical, 2007, 126, 174-180.	7.8	35
214	SnO2:Sb – A new material for high-temperature MEMS heater applications: Performance and limitations. Sensors and Actuators B: Chemical, 2007, 124, 421-428.	7.8	38
215	Correlation between atomic composition and gas sensing properties in tungsten–iron oxide thin films. Sensors and Actuators B: Chemical, 2007, 127, 22-28.	7.8	17
216	Low-concentration NO2detection with an adsorption porous silicon FET. IEEE Sensors Journal, 2006, 6, 19-23.	4.7	33

#	Article	IF	CITATIONS
217	Functionalized Single Wall Carbon Nanotubes Based Gas Sensor. , 2006, , .		10
218	Highly sensitive single crystalline metal oxide nanowires gas sensors. , 2006, , .		0
219	New Selective Gas Sensing Device based on Metal Oxide Layer with Suspended Catalyst. , 2006, , .		0
220	Gas-Sensing Characterization of TiO2-ZnO Based Thin Film. , 2006, , .		7
221	Random Forests, Nearest Shrunken Centroids and Support Vector Machines for the Classification of Diverse E-Nose Datasets. , 2006, , .		0
222	Investigation on Novel Poly (3-hexylthiophene)-ZnO Nanocomposite Thin Films Gas Sensor. , 2006, , .		2
223	Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks. Applied Physics Letters, 2006, 88, 203101.	3.3	399
224	Work Function as a Useful Feature for Development of SnO2 Nanowires Based Gas Sensing Devices. , 2006, , .		0
225	On the Role of Oxygen Vacancies in the Determination of the Gas-Sensing Properties of Tin-Oxide Nanowires. Materials Research Society Symposia Proceedings, 2006, 915, 1.	0.1	2
226	Gas sensitive light emission properties of tin oxide and zinc oxide nanobelts. Journal of Non-Crystalline Solids, 2006, 352, 1457-1460.	3.1	35
227	XPS investigation of CoOx-based MRISiC structures for hydrocarbon gas sensing. Surface and Interface Analysis, 2006, 38, 736-739.	1.8	20
228	Comparison of Fisher's linear discriminant to multilayer perceptron networks in the classification of vapors using sensor array data. Sensors and Actuators B: Chemical, 2006, 115, 647-655.	7.8	10
229	Layered WO3/ZnO/36° LiTaO3 SAW gas sensor sensitive towards ethanol vapour and humidity. Sensors and Actuators B: Chemical, 2006, 117, 442-450.	7.8	56
230	Indium oxide quasi-monodimensional low temperature gas sensor. Sensors and Actuators B: Chemical, 2006, 118, 204-207.	7.8	55
231	Iron-doped indium oxide by modified RGTO deposition for ozone sensing. Sensors and Actuators B: Chemical, 2006, 118, 221-225.	7.8	19
232	Application of ion beam analysis to the selective sublimation processing of thin films for gas sensing. Nuclear Instruments & Methods in Physics Research B, 2006, 249, 302-305.	1.4	0
233	Influence of iron addition on ethanol and CO sensing properties of tin oxide prepared with the RGTO technique. Sensors and Actuators B: Chemical, 2006, 115, 561-566.	7.8	14
234	Oxide nanopowders from the low-temperature processing of metal oxide sols and their application as gas-sensing materials. Sensors and Actuators B: Chemical, 2006, 118, 105-109.	7.8	26

#	Article	IF	CITATIONS
235	Oxide Nanobelts as Conductometric Gas Sensors. Materials and Manufacturing Processes, 2006, 21, 229-232.	4.7	16
236	Room-temperature gas sensing based on visible photoluminescence properties of metal oxide nanobelts. Journal of Optics, 2006, 8, S585-S588.	1.5	32
237	High Temperature Phases of Nanostructured Tungsten Oxide for Gas Sensing Applications. Materials Research Society Symposia Proceedings, 2006, 915, 1.	0.1	1
238	Study of white truffle aging with SPME-GC-MS and the Pico2-electronic nose. Sensors and Actuators B: Chemical, 2005, 106, 88-94.	7.8	39
239	Detection of toxigenic strains of Fusarium verticillioides in corn by electronic olfactory system. Sensors and Actuators B: Chemical, 2005, 108, 250-257.	7.8	80
240	Effects of Ta/Nb-doping on titania-based thin films for gas-sensing. Sensors and Actuators B: Chemical, 2005, 108, 21-28.	7.8	34
241	Classification of electronic nose data with support vector machines. Sensors and Actuators B: Chemical, 2005, 107, 730-737.	7.8	198
242	The novel EOS835 electronic nose and data analysis for evaluating coffee ripening. Sensors and Actuators B: Chemical, 2005, 110, 73-80.	7.8	86
243	Tin oxide nanobelts electrical and sensing properties. Sensors and Actuators B: Chemical, 2005, 111-112, 2-6.	7.8	112
244	Nucleation and growth of SnO2 nanowires. Journal of Crystal Growth, 2005, 275, e2083-e2087.	1.5	43
245	Nanostructured WO3 deposited by modified thermal evaporation for gas-sensing applications. Thin Solid Films, 2005, 490, 81-85.	1.8	130
246	Gas sensing properties of MoO3 nanorods to CO and CH3OH. Chemical Physics Letters, 2005, 407, 368-371.	2.6	188
247	Growth of tin oxide nanocrystals. Crystal Research and Technology, 2005, 40, 932-936.	1.3	23
248	SnO2 sub-micron wires for gas sensors. Microelectronic Engineering, 2005, 78-79, 178-184.	2.4	18
249	Structural and optical study of SnO2 nanobelts and nanowires. Materials Science and Engineering C, 2005, 25, 625-630.	7.3	75
250	Data analysis for a hybrid sensor array. Sensors and Actuators B: Chemical, 2005, 106, 136-143.	7.8	49
251	Selective sublimation processing of thin films for gas sensing. Sensors and Actuators B: Chemical, 2005, 108, 15-20.	7.8	3
252	Monitoring plants health in greenhouse for space missions. Sensors and Actuators B: Chemical, 2005, 108, 278-284.	7.8	30

#	Article	IF	CITATIONS
253	Structural characterization of V2O5–TiO2 thin films deposited by RF sputtering from a titanium target with vanadium insets. Sensors and Actuators B: Chemical, 2005, 109, 47-51.	7.8	7
254	Metal oxide nanocrystals for gas sensing. Sensors and Actuators B: Chemical, 2005, 109, 2-6.	7.8	113
255	MoO3–WO3 mixed oxide powder and thin films for gas sensing devices: A spectroscopic characterisation. Sensors and Actuators B: Chemical, 2005, 111-112, 28-35.	7.8	19
256	Hydrogen and hydrocarbon gas sensing performance of Pt/WO3/SiC MROSiC devices. Sensors and Actuators B: Chemical, 2005, 111-112, 111-116.	7.8	53
257	Photo-Induced Unpinning of Fermi Level in WO3. Sensors, 2005, 5, 594-603.	3.8	14
258	Pt/Ga2O3/SiC MRISiC devices: a study of the hydrogen response. Journal Physics D: Applied Physics, 2005, 38, 754-763.	2.8	18
259	SnO[sub 2] lithographic processing for nanopatterned gas sensors. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2005, 23, 2784.	1.6	19
260	Diffusion-equation approach to describe ionic mobility in nanostructured titania. Physical Review B, 2005, 72, .	3.2	4
261	Scanning electron microscopy of dopant distribution in semiconductors. Applied Physics Letters, 2005, 86, 101916.	3.3	12
262	Detection of landfill gases by chemoresistive sensors based on titanium, molybdenum, tungsten oxides. IEEE Sensors Journal, 2005, 5, 4-11.	4.7	18
263	Adsorption effects of NO2 at ppm level on visible photoluminescence response of SnO2 nanobelts. Applied Physics Letters, 2005, 86, 011923.	3.3	133
264	Electronic Olfactory Systems Based on Metal Oxide Semiconductor Sensor Arrays. MRS Bulletin, 2004, 29, 703-708.	3.5	40
265	Novel Materials and Applications of Electronic Noses and Tongues. MRS Bulletin, 2004, 29, 697-702.	3.5	53
266	Sub-micron structured Metal Oxide gas sensors by means of lithographic techniques. Materials Research Society Symposia Proceedings, 2004, 828, 108.	0.1	0
267	Low temperature selective NO2 sensors by nanostructured fibres of ZnO. Sensors and Actuators B: Chemical, 2004, 100, 261-265.	7.8	159
268	TiO2:Mo, MoO3:Ti, TiO+WO3 and TiO:W layer for landfill produced gases sensing. Sensors and Actuators B: Chemical, 2004, 100, 41-46.	7.8	17
269	Characterization of Ga2O3 based MRISiC hydrogen gas sensors. Sensors and Actuators B: Chemical, 2004, 103, 129-135.	7.8	59
270	Influence of metallic impurities on response kinetics in metal oxide thin film gas sensors. Sensors and Actuators B: Chemical, 2004, 103, 448-456.	7.8	12

#	Article	IF	CITATIONS
271	Remarks on the Use of Multilayer Perceptrons for the Analysis of Chemical Sensor Array Data. IEEE Sensors Journal, 2004, 4, 355-363.	4.7	38
272	Ozone adsorption on carbon nanotubes:Ab initiocalculations and experiments. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2004, 22, 1466-1470.	2.1	40
273	Electrical Properties of Tin Dioxide Two-Dimensional Nanostructures. Journal of Physical Chemistry B, 2004, 108, 1882-1887.	2.6	74
274	Sol-gel processed MoO 3 and WO 3 thin films for use as selective chemosensors. , 2004, , .		0
275	SnO>tex<\$_2\$>/tex <rgto 17-20.<="" 2004,="" 4,="" activation="" co="" for="" ieee="" journal,="" monitoring.="" sensors="" td="" uv=""><td>4.7</td><td>43</td></rgto>	4.7	43
276	Stable and very sensitive gas sensor based on novel mixed-metal oxides. , 2004, , .		1
277	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 741-744.	2.4	40
278	Tin oxide gas sensing: Comparison among different measurement techniques for gas mixture classification. IEEE Transactions on Instrumentation and Measurement, 2003, 52, 921-926.	4.7	42
279	Preparation and microstructural characterization of nanosized Mo–TiO2 and Mo–W–O thin films by sputtering: tailoring of composition and porosity by thermal treatment. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 101, 216-221.	3.5	18
280	Experimental evidence for a dissociation mechanism in NH3 detection with MIS field-effect devices. Sensors and Actuators B: Chemical, 2003, 89, 1-8.	7.8	8
281	Composition influence on the properties of sputtered Snî—,Wî—,O films. Sensors and Actuators B: Chemical, 2003, 89, 225-231.	7.8	19
282	Response to ethanol of thin films based on Mo and Ti oxides deposited by sputtering. Sensors and Actuators B: Chemical, 2003, 93, 409-415.	7.8	16
283	Novel selective ethanol sensors: W/TiO2 thin films by sol–gel spin-coating. Sensors and Actuators B: Chemical, 2003, 93, 495-502.	7.8	40
284	Structural and electrical characterisation of molybdenum–titanium mixed oxides for ethanol sensing deposited by RF sputtering. Sensors and Actuators B: Chemical, 2003, 92, 286-291.	7.8	20
285	CO sensing properties of W–Mo and tin oxide RGTO multiple layers structures. Sensors and Actuators B: Chemical, 2003, 95, 157-161.	7.8	6
286	Investigation of sol–gel prepared CeO2–TiO2 thin films for oxygen gas sensing. Sensors and Actuators B: Chemical, 2003, 95, 145-150.	7.8	90
287	Multiparametric porous silicon gas sensors with improved quality and sensitivity. Physica Status Solidi A, 2003, 197, 523-527.	1.7	32
288	p- and n-type Fe-doped SnO2 gas sensors fabricated by the mechanochemical processing technique. Sensors and Actuators B: Chemical, 2003, 93, 562-565.	7.8	127

#	Article	IF	CITATIONS
289	Surface photovoltage studies of porous silicon in presence of polluting gases: toward a selective gas sensor. , 2003, 5222, 12.		0
290	Binary Metal Oxide MoO ₃ -TiO ₂ and MoO ₃ -WO ₃ Thin Film Gas Sensors for Environmental Applications. , 2003, , .		0
291	Ti-Mo and Mo-W mixed oxides for gas sensing applications. , 2002, 4936, 277.		0
292	Coalescence inhibition in nanosized titania films and related effects on chemoresistive properties towards ethanol. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2002, 20, 523.	1.6	19
293	New technique for the manipulation of nanostrucured metal-oxides properties , 2002, , .		Ο
294	Selective semiconductor gas sensor based on surface photovoltage. , 2002, , .		3
295	Structural and Morphological Study of Wâ^'Snâ^'O Thin Films Deposited by Rheotaxial Growth and Thermal Oxidation. Chemistry of Materials, 2002, 14, 3422-3426.	6.7	4
296	Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Applied Physics Letters, 2002, 81, 1869-1871.	3.3	1,400
297	Thermal treatment stabilization processes in SnO/sub 2/ thin films catalyzed with Au and Pt. IEEE Sensors Journal, 2002, 2, 102-106.	4.7	12
298	Learning from data: a tutorial with emphasis on modern pattern recognition methods. IEEE Sensors Journal, 2002, 2, 203-217.	4.7	41
299	Multiparametric Porous Silicon Sensors. Sensors, 2002, 2, 121-126.	3.8	81
300	Sol–gel TiO2 and W/TiO2 nanostructured thin films for control of drunken driving. Sensors and Actuators B: Chemical, 2002, 83, 230-237.	7.8	56
301	Comparison of single and binary oxide MoO3, TiO2 and WO3 sol–gel gas sensors. Sensors and Actuators B: Chemical, 2002, 83, 276-280.	7.8	169
302	Thin oxide films as surface modifiers of MIS field effect gas sensors. Sensors and Actuators B: Chemical, 2002, 85, 109-119.	7.8	8
303	Investigation of thin films of mixed oxides for gas-sensing applications. Surface and Interface Analysis, 2002, 34, 672-676.	1.8	37
304	Nanostructured mixed oxides compounds for gas sensing applications. Sensors and Actuators B: Chemical, 2002, 84, 26-32.	7.8	107
305	Mo influence on SnO2 thin films properties. Thin Solid Films, 2002, 418, 16-20.	1.8	22
306	Coffee analysis with an electronic nose. IEEE Transactions on Instrumentation and Measurement, 2002, 51, 1334-1339.	4.7	66

#	Article	IF	CITATIONS
307	Boosting and Classification of Electronic Nose Data. Lecture Notes in Computer Science, 2002, , 262-271.	1.3	3
308	Structural Characterization of Tin and Molybdenum Oxides Thin Films Deposited by RGTO. Chemistry of Materials, 2001, 13, 2608-2612.	6.7	10
309	Front-side micromachined porous silicon nitrogen dioxide gas sensor. Thin Solid Films, 2001, 391, 261-264.	1.8	59
310	CO and NO2 response of tin oxide silicon doped thin films. Sensors and Actuators B: Chemical, 2001, 76, 270-274.	7.8	37
311	A novel porous silicon sensor for detection of sub-ppm NO2 concentrations. Sensors and Actuators B: Chemical, 2001, 77, 62-66.	7.8	102
312	On the role of catalytic additives in gas-sensitivity of SnO2-Mo based thin film sensors. Sensors and Actuators B: Chemical, 2001, 77, 268-274.	7.8	48
313	UV light activation of tin oxide thin films for NO2 sensing at low temperatures. Sensors and Actuators B: Chemical, 2001, 78, 73-77.	7.8	249
314	CO sensing properties of titanium and iron oxide nanosized thin films. Sensors and Actuators B: Chemical, 2001, 77, 16-21.	7.8	76
315	Nanosized Ti-doped MoO3 thin films for gas-sensing application. Sensors and Actuators B: Chemical, 2001, 77, 555-560.	7.8	25
316	Semiconductor MoO3–TiO2 thin film gas sensors. Sensors and Actuators B: Chemical, 2001, 77, 472-477.	7.8	83
317	Influence of gaseous species transport on the response of solid state gas sensors within enclosures. Sensors and Actuators B: Chemical, 2001, 78, 144-150.	7.8	19
318	Production and characterization of titanium and iron oxide nano-sized thin films. Journal of Materials Research, 2001, 16, 1559-1564.	2.6	17
319	Monitoring penetration of ethanol in a porous silicon microcavity by photoluminescence interferometry. Applied Physics Letters, 2001, 78, 3744-3746.	3.3	29
320	Nanostructured TiO2 and W:TiO2Thin Films by a Novel Sol-Gel Processing for Alcohol Sensing Devices. Materials Research Society Symposia Proceedings, 2000, 638, 1.	0.1	3
321	Towards a Deeper Comprehension of the Interaction Mechanisms between Mesoporous Silicon and NO2. Physica Status Solidi A, 2000, 182, 465-471.	1.7	14
322	The aging effect on SnO2–Au thin film sensors: electrical and structural characterization. Thin Solid Films, 2000, 371, 249-253.	1.8	89
323	NO2 monitoring at room temperature by a porous silicon gas sensor. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2000, 69-70, 210-214.	3.5	126
324	Titanium dioxide thin films prepared for alcohol microsensor applications. Sensors and Actuators B: Chemical, 2000, 66, 139-141.	7.8	90

#	Article	IF	CITATIONS
325	NO2 monitoring with a novel p-type material: TiO. Sensors and Actuators B: Chemical, 2000, 68, 175-183.	7.8	21
326	TiO2 thin films by a novel sol–gel processing for gas sensor applications. Sensors and Actuators B: Chemical, 2000, 68, 189-196.	7.8	342
327	Carbon monoxide response of molybdenum oxide thin films deposited by different techniques. Sensors and Actuators B: Chemical, 2000, 68, 168-174.	7.8	71
328	Preparation and characterisation of titanium–tungsten sensors. Sensors and Actuators B: Chemical, 2000, 65, 264-266.	7.8	21
329	Gas detection with a porous silicon based sensor. Sensors and Actuators B: Chemical, 2000, 65, 257-259.	7.8	57
330	Investigation on the O3 sensitivity properties of WO3 thin films prepared by sol–gel, thermal evaporation and r.f. sputtering techniques. Sensors and Actuators B: Chemical, 2000, 64, 182-188.	7.8	148
331	The features of thin film and ceramic sensors at the detection of CO and NO2. Sensors and Actuators B: Chemical, 2000, 68, 344-350.	7.8	58
332	Gold-catalysed porous silicon for NOx sensing. Sensors and Actuators B: Chemical, 2000, 68, 74-80.	7.8	46
333	A hierarchical classification scheme for an Electronic Nose. Sensors and Actuators B: Chemical, 2000, 69, 359-365.	7.8	19
334	Data preprocessing enhances the classification of different brands of Espresso coffee with an electronic nose. Sensors and Actuators B: Chemical, 2000, 69, 397-403.	7.8	85
335	Ti–W–O sputtered thin film as n- or p-type gas sensors. Sensors and Actuators B: Chemical, 2000, 70, 108-114.	7.8	33
336	A time delay neural network for estimation of gas concentrations in a mixture. Sensors and Actuators B: Chemical, 2000, 65, 267-269.	7.8	38
337	Light enhanced gas sensing properties of indium oxide and tin dioxide sensors. Sensors and Actuators B: Chemical, 2000, 65, 260-263.	7.8	214
338	Influence of the completion of oxidation on the long-term response of RGTO SnO2 gas sensors. Sensors and Actuators B: Chemical, 2000, 66, 40-42.	7.8	34
339	Sensitivity enhancement towards ethanol and methanol of TiO2 films doped with Pt and Nb. Sensors and Actuators B: Chemical, 2000, 64, 169-174.	7.8	81
340	Monitoring reliability of sensors in an array by neural networks. Sensors and Actuators B: Chemical, 2000, 67, 128-133.	7.8	22
341	Electron microscopy and Rutherford backscattering study of nucleation and growth in nanosized W–Ti–O thin films. Journal of Applied Physics, 2000, 88, 1097-1103.	2.5	23
342	Mo-W-O thin films for CO sensing. Materials Research Society Symposia Proceedings, 2000, 638, 1.	0.1	0

#	Article	IF	CITATIONS
343	Study on nanosized TiO/ WO3 thin films achieved by radio frequency sputtering. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 509-514.	2.1	11
344	Analysis of the Thermal Oxidation of Tin Droplets and Its Implications on Gas Sensor Stability. Journal of the Electrochemical Society, 1999, 146, 3527-3535.	2.9	22
345	Ozone detection using low-power-consumption metal–oxide gas sensors. Sensors and Actuators A: Physical, 1999, 74, 229-232.	4.1	52
346	Nanosized thin films of tungsten-titanium mixed oxides as gas sensors. Sensors and Actuators B: Chemical, 1999, 58, 289-294.	7.8	41
347	Very low power consumption micromachined CO sensors. Sensors and Actuators B: Chemical, 1999, 55, 140-146.	7.8	50
348	Electrical and structural properties of RGTO-In2O3 sensors for ozone detection. Sensors and Actuators B: Chemical, 1999, 57, 188-191.	7.8	36
349	Preparation of nanosized titania thick and thin films as gas-sensors. Sensors and Actuators B: Chemical, 1999, 57, 197-200.	7.8	82
350	Effect of nickel ions on sensitivity of In2O3 thin film sensors to NO2. Sensors and Actuators B: Chemical, 1999, 57, 153-158.	7.8	47
351	Growth of WO3 crystals from W–Ti–O thin films. Journal of Crystal Growth, 1999, 198-199, 1240-1244.	1.5	13
352	Micromachined gas sensors for environmental pollutants. Microsystem Technologies, 1999, 6, 54-59.	2.0	16
353	MoO3-based sputtered thin films for fast NO2 detection. Sensors and Actuators B: Chemical, 1998, 48, 285-288.	7.8	125
354	Organotin films deposited by laser-induced CVD as active layers in chemical gas sensors. Thin Solid Films, 1998, 323, 291-295.	1.8	40
355	High-precision neural pre-processing for signal analysis of a sensor array. Sensors and Actuators B: Chemical, 1998, 47, 77-83.	7.8	6
356	Conductivity and work function ozone sensors based on indium oxide. Sensors and Actuators B: Chemical, 1998, 49, 63-67.	7.8	45
357	Thin-film gas sensor implemented on a low-power-consumption micromachined silicon structure. Sensors and Actuators B: Chemical, 1998, 49, 88-92.	7.8	60
358	Helium purity control by thin film gas sensors at the NA-48 experiment at CERN. Sensors and Actuators B: Chemical, 1998, 47, 54-58.	7.8	0
359	Square and collinear four probe array and Hall measurements on metal oxide thin film gas sensors. Sensors and Actuators B: Chemical, 1998, 53, 69-75.	7.8	21
360	W–Ti–O layers for gas-sensing applications: Structure, morphology, and electrical properties. Journal of Materials Research, 1998, 13, 1568-1575.	2.6	12

#	Article	IF	CITATIONS
361	Oxidation of Sn Thin Films to SnO ₂ . Micro-Raman Mapping and X-ray Diffraction Studies. Journal of Materials Research, 1998, 13, 2457-2460.	2.6	93
362	On the Route towards Efficient Light Emitting Diodes Based on Porous Silicon. Solid State Phenomena, 1997, 54, 27-36.	0.3	0
363	Microstructural characterization of a titanium-tungsten oxide gas sensor. Journal of Materials Research, 1997, 12, 793-798.	2.6	48
364	Identification and quantification of methane and ethyl alcohol in an environment at variable humidity by an hybrid array. Sensors and Actuators B: Chemical, 1997, 44, 517-520.	7.8	18
365	Silicon hotplates for metal oxide gas sensor elements. Microsystem Technologies, 1997, 3, 183-190.	2.0	92
366	Quantification of H2S and NO2 using gas sensor arrays and an artificial neural network. Sensors and Actuators B: Chemical, 1997, 43, 235-238.	7.8	21
367	Gas-sensing applications of W–Ti–O-based nanosized thin films prepared by r.f. reactive sputtering. Sensors and Actuators B: Chemical, 1997, 44, 499-502.	7.8	54
368	Microstructure and morphology of tin dioxide multilayer thin film gas sensors. Sensors and Actuators B: Chemical, 1997, 44, 268-274.	7.8	51
369	Characterization of a molybdenum oxide sputtered thin film as a gas sensor. Thin Solid Films, 1997, 307, 148-151.	1.8	111
370	Evidence of Translational Disorder Generated by Oriented Defects in Magneli Phases. Journal of Solid State Chemistry, 1997, 131, 215-220.	2.9	10
371	Hydrogen and humidity sensing properties of C60 thin films. Synthetic Metals, 1996, 77, 273-275.	3.9	30
372	Characterization of a nanosized TiO2 gas sensor. Scripta Materialia, 1996, 7, 709-718.	0.5	114
373	Microraman Spectroscopy and X-Ray Diffraction Studies of Ti-W-O Thin Films. Materials Research Society Symposia Proceedings, 1996, 441, 475.	0.1	1
374	Kinetics of disorder-order transition of Tiî—,W oxide thin-film sensor. Sensors and Actuators B: Chemical, 1996, 31, 19-24.	7.8	24
375	A novel method for the preparation of nanosized tio2 thin films. Advanced Materials, 1996, 8, 334-337.	21.0	70
376	Structural Studies of Tungsten–Titanium Oxide Thin Films. Journal of Solid State Chemistry, 1996, 121, 379-387.	2.9	54
377	An electronic nose for the recognition of the vineyard of a red wine. Sensors and Actuators B: Chemical, 1996, 33, 83-88.	7.8	92
378	Sub-ppm NO2 sensors based on nanosized thin films of titanium-tungsten oxides. Sensors and Actuators B: Chemical, 1996, 31, 89-92.	7.8	64

#	Article	IF	CITATIONS
379	Photosensitivity activation of SnO2 thin film gas sensors at room temperature. Sensors and Actuators B: Chemical, 1996, 31, 99-103.	7.8	109
380	An Al2O3 sensor for low humidity content: characterization by impedance spectroscopy. Sensors and Actuators B: Chemical, 1996, 32, 1-5.	7.8	16
381	Polyphosphazene membrane as a very sensitive resistive and capacitive humidity sensor. Sensors and Actuators B: Chemical, 1996, 35, 99-102.	7.8	26
382	Preparation and micro-structural characterization of nanosized thin film of TiO2î—,WO3 as a novel material with high sensitivity towards NO2. Sensors and Actuators B: Chemical, 1996, 36, 381-383.	7.8	60
383	A thin-film SnO2 sensor system for simultaneous detection of CO and NO2 with neural signal evaluation. Sensors and Actuators B: Chemical, 1996, 36, 353-357.	7.8	49
384	Structural Models for Cobalt-Tin Oxide Thin Films. Journal of Solid State Chemistry, 1995, 116, 256-264.	2.9	6
385	Characterization of porous Al2O3î—,SiO2/Si sensor for low and medium humidity ranges. Sensors and Actuators B: Chemical, 1995, 23, 177-180.	7.8	50
386	Recent developments in semiconducting thin-film gas sensors. Sensors and Actuators B: Chemical, 1995, 23, 103-109.	7.8	462
387	WO3 sputtered thin films for NOx monitoring. Sensors and Actuators B: Chemical, 1995, 26, 89-92.	7.8	238
388	Improvement in signal evaluation methods for semiconductor gas sensors. Sensors and Actuators B: Chemical, 1995, 27, 267-270.	7.8	13
389	A novel method for the preparation of NH3 sensors based on ZnO-In thin films. Sensors and Actuators B: Chemical, 1995, 25, 588-590.	7.8	144
390	A systematic investigation on the use of time-dependent sensor signals in signal-processing techniques. Sensors and Actuators B: Chemical, 1995, 25, 785-789.	7.8	20
391	Complex chemical pattern recognition with sensor array: the discrimination of vintage years of wine. Sensors and Actuators B: Chemical, 1995, 25, 801-804.	7.8	71
392	The kinetics of formation of gas-sensitive RGTO-SnO2 films. Thin Solid Films, 1995, 263, 231-237.	1.8	50
393	Formation and structure of tin-iron oxide thin film CO sensors. Journal of Materials Research, 1994, 9, 1250-1256.	2.6	19
394	Frequency effect on highly sensitive No2 sensors based on RGTO SnO2(Al) thin films. Sensors and Actuators B: Chemical, 1994, 19, 497-499.	7.8	22
395	Capacitive humidity sensor with controlled performances, based on porous Al2O3 thin film growm on SiO2-Si substrate. Sensors and Actuators B: Chemical, 1994, 19, 551-553.	7.8	27
396	Performance evaluation of an SnO2-based sensor array for the quantitative measurement of mixtures of H2S and NO2. Sensors and Actuators B: Chemical, 1994, 20, 217-224.	7.8	29

#	Article	IF	CITATIONS
397	Sn1-xFexOy: a new material with high carbon monoxide sensitivity. Sensors and Actuators B: Chemical, 1994, 20, 163-167.	7.8	16
398	A study of sputtered Fe-Al multilayers and their stability at 400 K in an oxidizing atmosphere. Journal of Magnetism and Magnetic Materials, 1994, 133, 504-507.	2.3	2
399	Aging of Fe-Al thin film multilayers in an oxidizing environment in the 300–400 K range. Hyperfine Interactions, 1994, 92, 1249-1255.	0.5	3
400	Unknown Ga2O3 structural phase and related characteristics as active layers for O2 sensors. Applied Surface Science, 1993, 65-66, 277-282.	6.1	18
401	Detection of sub-ppm H2S concentrations by means of SnO2(Pt) thin films, grown by the RGTO technique. Sensors and Actuators B: Chemical, 1993, 15, 86-89.	7.8	32
402	Selective and sensitive humidity sensor based on barium chloride dihydrate. Sensors and Actuators B: Chemical, 1993, 14, 615-616.	7.8	2
403	Oxygen gas sensing properties of undoped and Li-doped SnO2 thin films. Sensors and Actuators B: Chemical, 1993, 13, 117-120.	7.8	23
404	Study of Fe-Al thin films oxidized at room temperature. Hyperfine Interactions, 1993, 78, 327-331.	0.5	2
405	Enhanced response to methane for SnO2 thin films prepared with the VCD technique. Sensors and Actuators B: Chemical, 1993, 16, 334-337.	7.8	6
406	Cavitands as selective materials for QMB sensors for nitrobenzene and other aromatic vapours. Sensors and Actuators B: Chemical, 1993, 13, 302-304.	7.8	56
407	Classical and novel techniques for the preparation of SnO2 thin-film gas sensors. Sensors and Actuators B: Chemical, 1992, 6, 239-247.	7.8	183
408	A novel PVD technique for the preparation of SnO2 thin films as C2H5OH sensors. Sensors and Actuators B: Chemical, 1992, 7, 721-726.	7.8	54
409	Methods for the preparation of NO, NO2 and H2 sensors based on tin oxide thin films, grown by means of the r.f. magnetron sputtering technique. Sensors and Actuators B: Chemical, 1992, 8, 79-88.	7.8	96
410	Effect of growth rate on the magnetic properties of Feî—,Al multilayers. Journal of Magnetism and Magnetic Materials, 1992, 104-107, 1767-1768.	2.3	5
411	Oxygen gas-sensing characteristics for ZnO(Li) sputtered thin films. Sensors and Actuators B: Chemical, 1992, 7, 747-751.	7.8	27
412	Microstructural characterization of Fe-Al thin films. Thin Solid Films, 1991, 204, 377-384.	1.8	3
413	Bismuth-doped tin oxide thin-film gas sensors. Sensors and Actuators B: Chemical, 1991, 3, 183-189.	7.8	39
414	Highly sensitive and selective NOx and NO2 sensor based on Cd-doped SnO2 thin films. Sensors and Actuators B: Chemical, 1991, 4, 457-461.	7.8	74

#	Article	IF	CITATIONS
415	A new technique for the preparation of highly sensitive hydrogen sensors based on SnO2(Bi2O3) thin films. Sensors and Actuators B: Chemical, 1991, 5, 253-255.	7.8	17
416	Magnetic and structural properties of Fe/Al multilayered films deposited by thermal evaporation. Journal of Magnetism and Magnetic Materials, 1991, 93, 147-149.	2.3	9
417	A new technique for growing porous SnO2(Bi2O3) thin films as hydrogen gas sensors. Journal of Materials Science Letters, 1991, 10, 602-604.	0.5	6
418	Metastable Structures of Fe-Al Multilayers Grown by Evaporation and Magnetron Sputtering. Key Engineering Materials, 1991, 48, 59-76.	0.4	3
419	Oxygen gas sensing characteristics at ambient pressure of undoped and lithium-doped ZnO-sputtered thin films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1990, 7, 63-68.	3.5	37
420	Response to nitrix oxide of thin and thick SnO2 films containing trivalent additives. Sensors and Actuators B: Chemical, 1990, 1, 79-82.	7.8	49
421	Reactively sputtered indium tin oxide polycrystalline thin films as NO and NO2 gas sensors. Thin Solid Films, 1990, 186, 349-360.	1.8	103
422	A new technique for growing large surface area SnO2thin film (RGTO technique). Semiconductor Science and Technology, 1990, 5, 1231-1233.	2.0	123
423	Electrical studies on oxygen ionosorption at ambient pressure on SnO2(In) thin films. Applied Surface Science, 1989, 40, 169-174.	6.1	9
424	Radio frequency magnetron sputtering growth and characterization of indium-tin oxide (ITO) thin films for NO2 gas sensors. Sensors and Actuators, 1988, 15, 235-242.	1.7	74
425	Thin polycrystalline silicon films grown by quasi- rheotaxy on aluminium-covered glass substrates. Thin Solid Films, 1987, 147, 251-258.	1.8	1
426	Growth of large-grain CuInSe2 thin films by flash-evaporation and sputtering. Solar Cells, 1986, 16, 155-164.	0.6	27
427	Low resistivity CdS thin films grown by flashâ€evaporation at low substrate temperature (150–200 °C). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1984, 2, 9-10.	2.1	19
428	Low resistivity n- and p-type CuInSe2 thin films grown by flash evaporation. Materials Chemistry and Physics, 1983, 9, 205-211.	4.0	7
429	Evaluation of CdTe thin films grown by quasi-rheotaxy for photovoltaic applications. Journal of Crystal Growth, 1983, 62, 343-350.	1.5	3
430	Low resistivity and high transparency ZnxCd1â^'xS thin films grown by flash evaporation. Thin Solid Films, 1983, 106, L91-L94.	1.8	2
431	Large-grained (111)-oriented CdTe thin films grown by "quasi-rheotaxy―on steel substrates. Thin Solid Films, 1982, 90, 413-417.	1.8	8
432	Electron and hole diffusion length investigation in CdTe thin films by SPV method. Solar Energy Materials and Solar Cells, 1982, 7, 343-350.	0.4	16

#	Article	IF	CITATIONS
433	Quasi-rheotaxial growth of Zn3P2. Thin Solid Films, 1981, 83, L133-L136.	1.8	14
434	Quasi-Rheotaxy a new technique to grow large grain thin films on low cost amorphous substrates. Revue De Physique Appliquée, 1981, 16, 11-14.	0.4	12
435	Thin films for solar cells prepared by flash-evaporation. Solar Energy Materials and Solar Cells, 1980, 3, 367-370.	0.4	9
436	Growth and characterization of CuGaxIn1â^'xSe2 thin films for solar cells. Materials Chemistry, 1979, 4, 549-555.	0.3	6
437	Crystal growth and properties of CuGaxIn1â^'xSe2 chalcopyrite compound. Solar Energy Materials and Solar Cells, 1979, 1, 3-9.	0.4	53
438	Preparation of low resistivity CdTe films by a multi-source evaporation method. Thin Solid Films, 1979, 64, L1-L4.	1.8	4
439	Electrical properties of Sb-doped ZnTe thin films. Physica Status Solidi A, 1978, 47, 371-374.	1.7	15
440	Growth and properties of low resistivity CdS films. Thin Solid Films, 1978, 55, 413-419.	1.8	17
441	Lowâ€resistivity ZnCdS films for use as windows in heterojunction solar cells. Applied Physics Letters, 1978, 32, 807-809.	3.3	47
442	Preparation and characteristics of CuGaSe2/CdS solar cells. Applied Physics Letters, 1977, 30, 108-110.	3.3	57
443	Memory effects in GaTe films. Journal of Non-Crystalline Solids, 1977, 23, 7-11.	3.1	2
444	High conductivity CdS films grown by a simple evaporation method. Thin Solid Films, 1977, 43, L15-L17.	1.8	23
445	Crystal growth and properties of the AgIn5S8 compound. Materials Research Bulletin, 1977, 12, 1207-1211.	5.2	26
446	Electroluminescence in CuGaSe2 single crystals. Journal of Luminescence, 1977, 15, 101-103.	3.1	14
447	Transport properties of semiconducting ZnIn2S4. Physica Status Solidi A, 1976, 34, 651-655.	1.7	9
448	Electroluminescence in CdIn2S4. Physica Status Solidi A, 1976, 36, K33-K36.	1.7	6
449	Electroluminescence in vapor grown CuGaS2. Journal of Luminescence, 1974, 9, 71-73.	3.1	3
450	Memory properties of CdSe single crystals. Solid-State Electronics, 1973, 16, 427-428.	1.4	5

#	Article	IF	CITATIONS
451	Charge storage in ZnIn2S4single crystals. Applied Physics Letters, 1973, 22, 21-22.	3.3	98
452	Current oscillations in insulating GaSe single crystals. Physica Status Solidi A, 1971, 5, K11-K14.	1.7	0
453	Double injection, negative resistance and electroluminescence in CdSe single crystals. Journal of Luminescence, 1971, 4, 149-154.	3.1	1
454	Feature Selection for High Dimensionality Data in Chemical Sensing. , 0, , .		2
455	Tin and Indium Oxide Nanocrystals Based Gas Sensors Characterization. , 0, , .		0
456	A New Hardware Approach to Realize Low-Cost Electronic Noses. , 0, , .		6
457	Substance Classification and Measure for Low-Cost Electronic Noses. , 0, , .		4
458	Structural and Electrical Characterization of Cobalt Oxide P-Type Gas Sensor. , 0, , .		2
459	Methods and Graphical Tools for Exploratory Data Analysis of Artificial Olfaction Experiments. , 0, , 317-339.		1