
Michael A Rogers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7218909/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	To gel or not to gel: correlating molecular gelation with solvent parameters. Chemical Society Reviews, 2015, 44, 6035-6058.	18.7	268
2	Potential food applications of edible oil organogels. Trends in Food Science and Technology, 2009, 20, 470-480.	7.8	243
3	Novel structuring strategies for unsaturated fats – Meeting the zero-trans, zero-saturated fat challenge: A review. Food Research International, 2009, 42, 747-753.	2.9	171
4	Advances in edible oleogel technologies – A decade in review. Food Research International, 2017, 97, 307-317.	2.9	168
5	Oil organogels: the fat of the future?. Soft Matter, 2009, 5, 1594.	1.2	134
6	Nanostructuring fiber morphology and solvent inclusions in 12-hydroxystearic acid / canola oil organogels. Current Opinion in Colloid and Interface Science, 2009, 14, 33-42.	3.4	123
7	Harnessing Hansen solubility parameters to predict organogel formation. Journal of Materials Chemistry, 2012, 22, 12651.	6.7	119
8	Measurement of Nanomaterials in Foods: Integrative Consideration of Challenges and Future Prospects. ACS Nano, 2014, 8, 3128-3135.	7.3	118
9	Engineering the oil binding capacity and crystallinity of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Soft Matter, 2008, 4, 1483.	1.2	110
10	Comparing and Correlating Solubility Parameters Governing the Self-Assembly of Molecular Gels Using 1,3:2,4-Dibenzylidene Sorbitol as the Gelator. Langmuir, 2014, 30, 14128-14142.	1.6	100
11	Solvent-Modulated Nucleation and Crystallization Kinetics of 12-Hydroxystearic Acid: A Nonisothermal Approach. Langmuir, 2009, 25, 8556-8566.	1.6	99
12	Non-Isothermal Nucleation and Crystallization of 12-Hydroxystearic Acid in Vegetable Oils. Crystal Growth and Design, 2008, 8, 4596-4601.	1.4	98
13	Structural basis for the yield stress in plastic disperse systems. Applied Physics Letters, 2003, 82, 3239-3241.	1.5	89
14	Edible oleogels in molecular gastronomy. International Journal of Gastronomy and Food Science, 2014, 2, 22-31.	1.3	89
15	Scaling Behavior of the Elastic Modulus in Colloidal Networks of Fat Crystals. Journal of Physical Chemistry B, 2004, 108, 171-179.	1.2	76
16	A molecular insight into the nature of crystallographic mismatches in self-assembled fibrillar networks under non-isothermal crystallization conditions. Soft Matter, 2010, 6, 404-408.	1.2	75
17	Effect of calcium source and exposure-time on basic caviar spherification using sodium alginate. International Journal of Gastronomy and Food Science, 2012, 1, 96-100.	1.3	71
18	Thellungiella: an Arabidopsis-related model plant adapted to cold temperatures. Plant, Cell and Environment, 2007, 30, 529-538.	2.8	70

#	Article	IF	CITATIONS
19	Influence of Emulsifier Structure on Lipid Bioaccessibility in Oil–Water Nanoemulsions. Journal of Agricultural and Food Chemistry, 2013, 61, 6505-6515.	2.4	64
20	Influence of Positional Isomers on the Macroscale and Nanoscale Architectures of Aggregates of Racemic Hydroxyoctadecanoic Acids in Their Molecular Gel, Dispersion, and Solid States. Langmuir, 2012, 28, 4955-4964.	1.6	59
21	Influence of solvent on the supramolecular architectures in molecular gels. Soft Matter, 2013, 9, 5942.	1.2	59
22	Crystalline stability of self-assembled fibrillar networks of 12-hydroxystearic acid in edible oils. Food Research International, 2008, 41, 1026-1034.	2.9	56
23	Influence of chirality on the modes of self-assembly of 12-hydroxystearic acid in molecular gels of mineral oil. Soft Matter, 2011, 7, 7359.	1.2	55
24	Multicomponent Hollow Tubules Formed Using Phytosterol and γ-Oryzanol-Based Compounds: An Understanding of Their Molecular Embrace. Journal of Physical Chemistry A, 2010, 114, 8278-8285.	1.1	54
25	Solvent-Induced Polymorphic Nanoscale Transitions for 12-Hydroxyoctadecanoic Acid Molecular Gels. Crystal Growth and Design, 2013, 13, 1360-1366.	1.4	53
26	Viscoelastic Emulsion Improved the Bioaccessibility and Oral Bioavailability of Crystalline Compound: A Mechanistic Study Using in Vitro and in Vivo Models. Molecular Pharmaceutics, 2015, 12, 2229-2236.	2.3	50
27	A Novel Cryo‧EM Technique for Imaging Vegetable Oil Based Organogels. JAOCS, Journal of the American Oil Chemists' Society, 2007, 84, 899-906.	0.8	49
28	Nanoscale and microscale structural changes alter the critical gelator concentration of self-assembled fibrillar networks. CrystEngComm, 2013, 15, 4507.	1.3	46
29	Phase-Selective Sorbent Xerogels as Reclamation Agents for Oil Spills. Langmuir, 2013, 29, 5617-5621.	1.6	46
30	Systematic modifications of alkane-based molecular gelators and the consequences to the structures and properties of their gels. New Journal of Chemistry, 2015, 39, 785-799.	1.4	45
31	Simplifying Hansen Solubility Parameters for Complex Edible Fats and Oils. Food Biophysics, 2016, 11, 283-291.	1.4	43
32	Experimental validation of the modified Avrami model for non-isothermal crystallization conditions. CrystEngComm, 2011, 13, 866-875.	1.3	42
33	Biophysical Aspects of Lipid Digestion in Human Breast Milk and Similacâ,,¢ Infant Formulas. Food Biophysics, 2015, 10, 282-291.	1.4	40
34	Ternary Phase Diagram of βâ€Sitosterol–γâ€Oryzanol–Canola Oil. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1533-1540.	0.8	37
35	Naturally occurring nanoparticles in food. Current Opinion in Food Science, 2016, 7, 14-19.	4.1	37
36	<i>In vitro</i> gastrointestinal digestibility of phytosterol oleogels: influence of self-assembled microstructures on emulsification efficiency and lipase activity. Food and Function, 2020, 11, 9503-9513.	2.1	31

#	Article	IF	CITATIONS
37	Comparison of Dipolar, H-Bonding, and Dispersive Interactions on Gelation Efficiency of Positional Isomers of Keto and Hydroxy Substituted Octadecanoic Acids. Langmuir, 2013, 29, 6467-6475.	1.6	30
38	Investigating the Phospholipid Effect on the Bioaccessibility of Rosmarinic Acid-Phospholipid Complex through a Dynamic Gastrointestinal in Vitro Model. Pharmaceutics, 2019, 11, 156.	2.0	28
39	Micro-viscosity of liquid oil confined in colloidal fat crystal networks. Soft Matter, 2014, 10, 8652-8658.	1.2	26
40	The curious case of 12-hydroxystearic acid — the Dr. Jekyll & Mr. Hyde of molecular gelators. Current Opinion in Colloid and Interface Science, 2020, 45, 68-82.	3.4	26
41	Activation Energy of Crystallization for Trihydroxystearin, Stearic Acid, and 12-Hydroxystearic Acid under Nonisothermal Cooling Conditions. Crystal Growth and Design, 2011, 11, 3593-3599.	1.4	25
42	Construction of foam-templated oleogels based on rice bran protein. Food Hydrocolloids, 2022, 124, 107245.	5.6	24
43	Post-crystallization increases in the mechanical strength of self-assembled fibrillar networks is due to an increase in network supramolecular ordering. Journal Physics D: Applied Physics, 2008, 41, 215501.	1.3	23
44	Hydrogen-Bonding Density of Supramolecular Self-Assembled Fibrillar Networks Probed Using Synchrotron Infrared Spectromicroscopy. Crystal Growth and Design, 2009, 9, 3621-3625.	1.4	23
45	Assembly pattern of multicomponent supramolecular oleogel composed of ceramide and lecithin in sunflower oil: self-assembly or self-sorting?. Food and Function, 2020, 11, 7651-7660.	2.1	23
46	12-Hydroxystearic acid SAFiNs in aliphatic diols – a molecular oddity. CrystEngComm, 2015, 17, 8031-8038.	1.3	22
47	Do Molecular Gelators Cluster in Hansen Space?. Crystal Growth and Design, 2014, 14, 4811-4818.	1.4	21
48	Self-assembly of 12-hydroxystearic acid molecular gels in mixed solvent systems rationalized using Hansen solubility parameters. Colloid and Polymer Science, 2015, 293, 975-983.	1.0	21
49	Effect of carrier oil on α-tocopherol encapsulation in ora-pro-nobis (Pereskia aculeata Miller) mucilage-whey protein isolate microparticles. Food Hydrocolloids, 2020, 105, 105716.	5.6	21
50	Water-induced self-assembly of mixed gelator system (ceramide and lecithin) for edible oil structuring. Food and Function, 2019, 10, 3923-3933.	2.1	20
51	A potential bioactive hardâ€stock fat replacer comprised of a molecular gel. Food Science and Nutrition, 2017, 5, 579-587.	1.5	19
52	Influence of the Hydroxyl Position in Racemic Hydroxyoctadecanoic Acids on the Crystallization Kinetics and Activation Energies of Gels and Dispersions in Mineral Oil. Crystal Growth and Design, 2012, 12, 5497-5504.	1.4	18
53	Molecular Nuances Governing the Self-Assembly of 1,3:2,4-Dibenzylidene- <scp>d</scp> -sorbitol. Langmuir, 2017, 33, 10907-10916.	1.6	18
54	Rheological assessment of the sol–gel transition for self-assembling low molecular weight gelators. Food Research International, 2011, 44, 1447-1451.	2.9	17

#	Article	IF	CITATIONS
55	Benzoyl Peroxide Formulated Polycarbophil/Carbopol 934P Hydrogel with Selective Antimicrobial Activity, Potentially Beneficial for Treatment and Prevention of Bacterial Vaginosis. Infectious Diseases in Obstetrics and Gynecology, 2013, 2013, 1-10.	0.4	17
56	Kinetics of 12-Hydroxyoctadecanoic Acid SAFiN Crystallization Rationalized Using Hansen Solubility Parameters. Langmuir, 2016, 32, 12833-12841.	1.6	17
57	InÂvitro measurements of luminal viscosity and glucose/maltose bioaccessibility for oat bran, instant oats, and steel cut oats. Food Hydrocolloids, 2017, 70, 293-303.	5.6	17
58	Comparison of methodologies used to define the protein quality of human foods and support regulatory claims. Applied Physiology, Nutrition and Metabolism, 2020, 45, 917-926.	0.9	17
59	Salicylic Acid (SA) Bioaccessibility from SA-Based Poly(anhydride-ester). Biomacromolecules, 2014, 15, 3406-3411.	2.6	16
60	Opportunities and challenges in developing orally administered cannabis edibles. Current Opinion in Food Science, 2019, 28, 7-13.	4.1	16
61	Lipid digestion of oil-in-water emulsions stabilized with low molecular weight surfactants. Food and Function, 2019, 10, 8195-8207.	2.1	16
62	Investigations of in vitro bioaccessibility from interesterified stearic and oleic acid-rich blends. Food and Function, 2016, 7, 1932-1940.	2.1	15
63	The influence of dietary fat and intestinal pH on calcium bioaccessibility: an <i>in vitro</i> study. Food and Function, 2018, 9, 1809-1815.	2.1	15
64	Hansen Solubility Parameters as a Tool in the Quest for New Edible Oleogels. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 393-405.	0.8	15
65	Avocado-derived polyols for use as novel co-surfactants in low energy self-emulsifying microemulsions. Scientific Reports, 2020, 10, 5566.	1.6	13
66	Co-operative self-assembly of cholesterol and Î ³ -oryzanol composite crystals. CrystEngComm, 2011, 13, 7049.	1.3	12
67	Molecular motifs encoding self-assembly of peptide fibers into molecular gels. Soft Matter, 2019, 15, 9205-9214.	1.2	12
68	Self-assembled fibrillar networks comprised of a naturally-occurring cyclic peptide—LOB3. RSC Advances, 2016, 6, 40765-40776.	1.7	11
69	Potential applications of luminescent molecular rotors in food science and engineering. Critical Reviews in Food Science and Nutrition, 2018, 58, 1902-1916.	5.4	11
70	Engineering water-induced ceramide/lecithin oleogels: understanding the influence of water added upon pre- and post-nucleation. Food and Function, 2020, 11, 2048-2057.	2.1	11
71	Gastric viscosity and sugar bioaccessibility of instant and steel cut oat/milk protein blends. Food Hydrocolloids, 2018, 82, 424-433.	5.6	10
72	Thermo-mechanical method for the determination of the fractal dimension of fat crystal networks. Journal of Thermal Analysis and Calorimetry, 2009, 98, 7-12.	2.0	9

#	Article	IF	CITATIONS
73	Biomimicry – An approach to engineering oils into solid fats. Lipid Technology, 2015, 27, 175-178.	0.3	9
74	Molecular gels: improving selection and design through computational methods. Current Opinion in Food Science, 2016, 9, 84-92.	4.1	9
75	Surfactants. , 2019, , 276-282.		9
76	A comprehensive perspective of food nanomaterials. Advances in Food and Nutrition Research, 2019, 88, 1-45.	1.5	8
77	Ceramide Oleogels. , 2011, , 221-234.		6
78	Solvent induced supramolecular anisotropy in molecular gels. Materials Chemistry and Physics, 2017, 194, 224-230.	2.0	6
79	Hansen Solubility Parameters Clarify the Role of the Primary and Secondary Hydroxyl Groups on the Remarkable Self-Assembly of 1:3,2:4-Dibenzylidene Sorbitol. Journal of Physical Chemistry C, 2020, 124, 26455-26466.	1.5	6
80	Temperature Dependence of Relaxation Spectra for Self-Assembled Fibrillar Networks of 12-Hydroxystearic Acid in Canola Oil Organogels. Food Biophysics, 2012, 7, 132-137.	1.4	5
81	Encyclopedia of Food Chemistry: Fat replacers. , 2019, , 96-100.		5
82	Supramolecular Fractal Growth of Self-Assembled Fibrillar Networks. Gels, 2021, 7, 46.	2.1	5
83	Fat Crystal Networks. , 2008, , 369-414.		5
84	Surfactant concentration and type affects the removal of <i>Escherichia coli</i> from pig skin during a simulated hand wash. Letters in Applied Microbiology, 2017, 65, 292-297.	1.0	4
85	<i>Sous Vide</i> Cook Temperature Alters the Physical Structure and Lipid Bioaccessibility of Beef <i>Longissimus</i> Muscle in TIM-1. Journal of Agricultural and Food Chemistry, 2021, 69, 8394-8402.	2.4	4
86	Microstructure of fat crystallizing on a collagenous surface. European Journal of Lipid Science and Technology, 2005, 107, 684-688.	1.0	3
87	Novel Lipid Substitutes. , 2011, , 603-616.		3
88	Dependence of liquid crystal morphology on phospholipid hydrocarbon length. Colloids and Surfaces B: Biointerfaces, 2011, 87, 116-121.	2.5	3
89	Dissecting kinetic pathways to formation of the fibrillar objects in molecular gels using synchrotron FT-IR. CrystEngComm, 2015, 17, 8085-8092.	1.3	3
90	12-Hydroxystearic Acid Oleogels. , 2018, , 85-102.		3

90 12-Hydroxystearic Acid Oleogels. , 2018, , 85-102.

#	Article	IF	CITATIONS
91	Ceramide Oleogels. , 2018, , 235-248.		3
92	Lipid digestibility and bioaccessibility of a high dairy fat meal is altered when consumed with whole apples: Investigations using static and dynamic in vitro digestion models. Food Structure, 2021, 28, 100191.	2.3	3
93	Crystallization of Fats and Fatty Acids in Edible Oils and Structure Determination. , 2017, , 541-559.		2
94	Chemical hardening of gliadin nanoparticles alters their oil-water interfacial behaviour. Food Structure, 2021, 30, 100218.	2.3	2
95	Luminescence Spectroscopy – a Useful Tool in Real-Time Monitoring of Viscosity during In-Vitro Digestion. Food Biophysics, 2021, 16, 181-190.	1.4	2
96	Structural Properties of Egg Yolks Modify In-vitro Lipid Digestion. Food Biophysics, 0, , 1.	1.4	2
97	Lipid crystallinity of oil-in-water emulsions alters in vitro. Food Chemistry, 2022, 382, 132326.	4.2	2
98	Hydroxystearic Acid Oleogels. , 2011, , 101-118.		1
99	Encyclopedia of Food Chemistry: Water. , 2019, , 297-304.		1
100	Data Science & Engineering into Food Science: A novel Big Data Platform for Low Molecular Weight Gelators' Behavioral Analysis. Journal of Computer Science and Technology(Argentina), 2020, 20, e08.	0.5	1
101	Sliced versus formulated potato chips – Does food structure alter lipid digestion?. Food Structure, 2022, 32, 100272.	2.3	1
102	Functional Foods. , 2010, , 1-4.		0
103	THE EFFECT OF PHASE SEPARATION ON ENZYME KINETICS IN FROZEN SUGAR SOLUTIONS CONTAINING PROTEIN AND POLYSACCHARIDE. Journal of Food Biochemistry, 2010, 34, 283-294.	1.2	0
104	Effects of a wax organogel and alginate gel complex on holy basil (<scp><i>Ocimum) Tj ETQq0 0 0 rgBT /Overlock the Science of Food and Agriculture, 2018, 98, 4488-4494.</i></scp>	10 Tf 50 1.7	227 Td (san 0
105	Preface. Advances in Food and Nutrition Research, 2019, 88, xi-xiii.	1.5	0
106	The Higher Calcium Absorption Associated with a High Fat Diet is Not Due to Intestinal Calcium Availability. FASEB Journal, 2015, 29, 760.2.	0.2	0
107	Food as a drug. Oncoscience, 2015, 2, 801-802.	0.9	0
108	CHAPTER 3. Biomimicry: An Approach for Oil Structuring. Food Chemistry, Function and Analysis, 2017, , 53-68.	0.1	0

#	Article	IF	CITATIONS
109	Chapter 6. Interfacial Considerations—Fibers and Liquids. Monographs in Supramolecular Chemistry, 2018, , 167-189.	0.2	0
110	Lipid-Based Nanosystems Production. , 2019, , 53-73.		0
111	Lipase-catalyzed Preparation of Neopentyl Glycol Diester As a Biolubricant. , 0, , .		Ο
112	Sous Vide Cooking Changes Lipid Bioaccessibility of Egg Yolk. , 0, , .		0
113	Chapter 6. Encapsulation of Nutraceuticals. Food Chemistry, Function and Analysis, 2020, , 79-104.	0.1	0