
Julio Camarero De Diego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7218559/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sub-nT Resolution of Single Layer Sensor Based on the AMR Effect in La _{2/3} Sr _{1/3} MnO ₃ Thin Films. IEEE Transactions on Magnetics, 2022, 58, 1-4.	1.2	8
2	Engineering Periodic Dinuclear Lanthanideâ€Directed Networks Featuring Tunable Energy Level Alignment and Magnetic Anisotropy by Metal Exchange. Small, 2022, 18, e2107073.	5.2	8
3	Engineering Periodic Dinuclear Lanthanideâ€Directed Networks Featuring Tunable Energy Level Alignment and Magnetic Anisotropy by Metal Exchange (Small 22/2022). Small, 2022, 18, .	5.2	0
4	Interfacial Exchange Phenomena Driven by Ferromagnetic Domains. Advanced Materials Interfaces, 2022, 9, .	1.9	2
5	Effective control of the magnetic anisotropy in ferromagnetic MnBi micro-islands. Journal of Alloys and Compounds, 2021, 852, 156731.	2.8	3
6	Spin-Orbit Torque from the Introduction of Cu Interlayers in Pt/Cu/Co/Pt Nanolayered Structures for Spintronic Devices. ACS Applied Nano Materials, 2021, 4, 487-492.	2.4	11
7	Polystyrene Nanopillars with Inbuilt Carbon Nanotubes Enable Synaptic Modulation and Stimulation in Interfaced Neuronal Networks. Advanced Materials Interfaces, 2021, 8, 2002121.	1.9	13
8	Large Perpendicular Magnetic Anisotropy in Nanometer-Thick Epitaxial Graphene/Co/Heavy Metal Heterostructures for Spin–Orbitronics Devices. ACS Applied Nano Materials, 2021, 4, 4398-4408.	2.4	13
9	Engineering the spin conversion in graphene monolayer epitaxial structures. APL Materials, 2021, 9, .	2.2	9
10	Tuning the Magnetic Anisotropy of Lanthanides on a Metal Substrate by Metal–Organic Coordination. Small, 2021, 17, e2102753.	5.2	8
11	Photoactivated Nanoscale Temperature Gradient Detection Using X-ray Absorption Spectroscopy as a Direct Nanothermometry Method. Nano Letters, 2021, 21, 769-777.	4.5	23
12	Nanostructured gold electrodes promote neural maturation and network connectivity. Biomaterials, 2021, 279, 121186.	5.7	13
13	An extraordinary chiral exchange-bias phenomenon: engineering the sign of the bias field in orthogonal bilayers by a magnetically switchable response mechanism. Nanoscale, 2020, 12, 1155-1163.	2.8	7
14	Thermally Activated Processes for Ferromagnet Intercalation in Graphene-Heavy Metal Interfaces. ACS Applied Materials & Interfaces, 2020, 12, 4088-4096.	4.0	10
15	RMATE: A device to test radiation-induced effects under controlled magnetic field and temperature. Fusion Engineering and Design, 2020, 154, 111431.	1.0	0
16	Interfacing Neurons with Nanostructured Electrodes Modulates Synaptic Circuit Features. Advanced Biology, 2020, 4, e2000117.	3.0	17
17	Epitaxial strain and thickness dependent structural, electrical and magnetic properties of La _{0.67} Sr _{0.33} MnO ₃ films. Journal Physics D: Applied Physics, 2020, 53, 375005.	1.3	21
18	Intrinsic Mixed Bloch–Néel Character and Chirality of Skyrmions in Asymmetric Epitaxial Trilayers. ACS Applied Materials & Interfaces, 2020, 12, 25419-25427.	4.0	12

#	Article	IF	CITATIONS
19	MnBi thin films for high temperature permanent magnet applications. AIP Advances, 2019, 9, .	0.6	2
20	Evidence of anomalous switching of the in-plane magnetic easy axis with temperature in Fe ₃ O ₄ film on SrTiO ₃ :Nb by v-MOKE and ferromagnetic resonance. Nanoscale, 2019, 11, 19870-19876.	2.8	3
21	Spontaneous exchange bias formation driven byÂaÂstructural phase transition in the antiferromagnetic material. Nature Materials, 2018, 17, 28-35.	13.3	39
22	Ultrathin films of L1-MnAl on GaAs (001): A hard magnetic MnAl layer onto a soft Mn-Ga-As-Al interface. APL Materials, 2018, 6, .	2.2	12
23	Room temperature biaxial magnetic anisotropy in La0.67Sr0.33MnO3 thin films on SrTiO3 buffered MgO (001) substrates for spintronic applications. Applied Physics Letters, 2018, 113, .	1.5	16
24	Unraveling Dzyaloshinskii–Moriya Interaction and Chiral Nature of Graphene/Cobalt Interface. Nano Letters, 2018, 18, 5364-5372.	4.5	60
25	Severe tuning of permanent magnet properties in gas-atomized MnAl powder by controlled nanostructuring and phase transformation. Acta Materialia, 2018, 157, 42-52.	3.8	24
26	Development of permanent magnet MnAlC/polymer composites and flexible filament for bonding and 3D-printing technologies. Science and Technology of Advanced Materials, 2018, 19, 465-473.	2.8	57
27	Application of a novel flash-milling procedure for coercivity development in nanocrystalline MnAl permanent magnet powders. Journal Physics D: Applied Physics, 2017, 50, 105004.	1.3	31
28	Engineering Large Anisotropic Magnetoresistance in La _{0.7} Sr _{0.3} MnO ₃ Films at Room Temperature. Advanced Functional Materials, 2017, 27, 1700664.	7.8	39
29	Study of phases evolution in high-coercive MnAl powders obtained through short milling time of gas-atomized particles. Journal of Alloys and Compounds, 2017, 712, 373-378.	2.8	27
30	High coercive LTP-MnBi for high temperature applications: From isolated particles to film-like structures. Journal of Alloys and Compounds, 2017, 729, 1156-1164.	2.8	13
31	Emergence of the Stoner-Wohlfarth astroid in thin films at dynamic regime. Scientific Reports, 2017, 7, 13474.	1.6	11
32	Direct observation of temperature-driven magnetic symmetry transitions by vectorial resolved MOKE magnetometry. Journal of Physics Condensed Matter, 2017, 29, 405805.	0.7	3
33	Tuning domain wall velocity with Dzyaloshinskii-Moriya interaction. Applied Physics Letters, 2017, 111, .	1.5	40
34	Inter-grain effects on the magnetism of M-type strontium ferrite. Journal of Alloys and Compounds, 2017, 692, 280-287.	2.8	6
35	Chiral asymmetry driven by unidirectional magnetic anisotropy in spin-orbitronic systems. , 2017, , .		0
36	Thickness and angular dependent magnetic anisotropy of La _{0.67} Sr _{0.33} MnO ₃ thin films by Vectorial Magneto Optical Kerr Magnetometry. Journal of Physics: Conference Series, 2017, 903, 012021.	0.3	5

#	Article	IF	CITATIONS
37	Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures. AIP Advances, 2016, 6, 055819.	0.6	2
38	Towards high performance CoFe2O4 isotropic nanocrystalline powder for permanent magnet applications. Applied Physics Letters, 2016, 109, .	1.5	30
39	Surface magnetization and the role of pattern defects in various types of ripple patterned films. Journal Physics D: Applied Physics, 2016, 49, 135002.	1.3	12
40	Chiral asymmetry driven by unidirectional magnetic anisotropy in Spin-Orbitronic systems. Proceedings of SPIE, 2016, , .	0.8	0
41	Tunable nanocrystalline CoFe ₂ O ₄ isotropic powders obtained by co-precipitation and ultrafast ball milling for permanent magnet applications. RSC Advances, 2016, 6, 87282-87287.	1.7	22
42	Observation of Localized Vibrational Modes of Graphene Nanodomes by Inelastic Atom Scattering. Nano Letters, 2016, 16, 2-7.	4.5	26
43	CoFe <inf>2</inf> O <inf>4</inf> isotropic powders for permanent magnet applications. , 2015, , .		0
44	Interfacial exchange-coupling induced chiral symmetry breaking of spin-orbit effects. Physical Review B, 2015, 92, .	1.1	9
45	g-force induced giant efficiency of nanoparticles internalization into living cells. Scientific Reports, 2015, 5, 15160.	1.6	7
46	A Single Picture Explains Diversity of Hyperthermia Response of Magnetic Nanoparticles. Journal of Physical Chemistry C, 2015, 119, 15698-15706.	1.5	141
47	Towards spintronics materials for energy saving. , 2015, , .		0
48	Note: Vectorial-magneto optical Kerr effect technique combined with variable temperature and full angular range all in a single setup. Review of Scientific Instruments, 2015, 86, 046109.	0.6	13
49	Influence of the aggregation, concentration, and viscosity on the nanomagnetism of iron oxide nanoparticle colloids for magnetic hyperthermia. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	46
50	Extraordinary exchange-bias effects in coupled SmCo <inf>5</inf> (perpendicular)/CoFeB (in-plane) bilayers. , 2015, , .		0
51	Direct experimental determination of the anisotropic magnetoresistive effects. Applied Physics Letters, 2014, 104, 202407.	1.5	12
52	Modulation of Magnetic Heating via Dipolar Magnetic Interactions in Monodisperse and Crystalline Iron Oxide Nanoparticles. Journal of Physical Chemistry C, 2014, 118, 19985-19994.	1.5	82
53	Vectorial Kerr magnetometer for simultaneous and quantitative measurements of the in-plane magnetization components. Review of Scientific Instruments, 2014, 85, 053904.	0.6	32
54	Stoichiometric magnetite grown by infrared nanosecond pulsed laser deposition. Applied Surface Science, 2013, 282, 642-651.	3.1	17

#	Article	IF	CITATIONS
55	Room temperature in-plane ⟨100⟩ magnetic easy axis for Fe3O4/SrTiO3(001):Nb grown by infrared pulsed laser deposition. Journal of Applied Physics, 2013, 114, .	1.1	37
56	Structural and magnetic characterization of magnetite deposits prepared by infrared pulsed laser deposition. , 2013, , .		0
57	Substrate polarization effects in two-dimensional magnetic arrays. Physical Review B, 2012, 86, .	1.1	0
58	Magnetization reversal signatures in the magnetoresistance of magnetic multilayers. Physical Review B, 2012, 86, .	1.1	15
59	Accurate determination of the specific absorption rate in superparamagnetic nanoparticles under non-adiabatic conditions. Applied Physics Letters, 2012, 101, 062413.	1.5	48
60	Current-induced domain wall motion and magnetization dynamics in CoFeB/Cu/Co nanostripes. Journal of Physics Condensed Matter, 2012, 24, 024213.	0.7	6
61	Exploring the limits of soft x-ray magnetic holography: Imaging magnetization reversal of buried interfaces (invited). Journal of Applied Physics, 2011, 109, 07D357.	1.1	10
62	Geometry-dependent magnetization reversal mechanism in ordered Py antidot arrays. Journal Physics D: Applied Physics, 2011, 44, 505001.	1.3	52
63	Tailoring magnetic anisotropy in epitaxial half metallic La0.7Sr0.3MnO3 thin films. Journal of Applied Physics, 2011, 110, .	1.1	42
64	Substrate-induced magnetic anisotropy in La0.7Sr0.3MnO3epitaxial thin films grown onto (110) and (111)"8) SrTiO3substrates. Journal of Physics: Conference Series, 2011, 303, 012058.	0.3	1
65	Role of anisotropy configuration in exchange-biased systems. Journal of Applied Physics, 2011, 109, .	1.1	24
66	Magnetization reversal in half metallic La _{0.7} Sr _{0.3} MnO ₃ films grown onto vicinal surfaces. Journal of Applied Physics, 2011, 109, 07B107.	1.1	16
67	Direct observation of Oersted-field-induced magnetization dynamics in magnetic nanostripes. Physical Review B, 2011, 83, .	1.1	25
68	Imaging and quantifying perpendicular exchange biased systems by soft x-ray holography and spectroscopy. Applied Physics Letters, 2010, 96, 072503.	1.5	10
69	Imaging the magnetization reversal of step-induced uniaxial magnetic anisotropy in vicinal epitaxial La _{0.7} Sr _{0.3} MnO ₃ films. New Journal of Physics, 2010, 12, 103033.	1.2	16
70	Emergence of noncollinear anisotropies from interfacial magnetic frustration in exchange-bias systems. Physical Review B, 2009, 80, .	1.1	111
71	Highly asymmetric magnetic behavior in exchange biased systems induced by noncollinear field cooling. Applied Physics Letters, 2009, 95, .	1.5	56
72	Thermal stability of Cu and Fe nitrides and their applications for writing locally spin valves. Applied Physics Letters, 2009, 94, 263112.	1.5	32

#	Article	IF	CITATIONS
73	Uniaxial magnetic anisotropy induced by vicinal surfaces in half metallic La0.7Sr0.3MnO3 thin films. Materials Research Society Symposia Proceedings, 2009, 1198, 7.	0.1	0
74	Quantum oscillations in surface properties. Surface Science, 2009, 603, 1389-1396.	0.8	17
75	Molecular vs. inorganic spintronics: the role of molecular materials and single molecules. Journal of Materials Chemistry, 2009, 19, 1678.	6.7	156
76	Domain wall dynamics and interlayer interactions in magnetic trilayer systems studied by XMCD-PEEM. Applied Physics A: Materials Science and Processing, 2008, 92, 505-510.	1.1	4
77	Surfactant-assisted epitaxial growth and magnetism of Fe films on Cu(111). Journal of Physics Condensed Matter, 2008, 20, 265008.	0.7	8
78	Looking for Ferromagnetic Signals in Proton-Irradiated Graphite. Mathematics in Industry, 2008, , 477-482.	0.1	1
79	Characterization of Nanocrystalline Permalloy Thin Films Obtained by Nitrogen IBAD. IEEE Transactions on Magnetics, 2008, 44, 3913-3916.	1.2	11
80	Experimental investigation of the spin reorientation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>Co</mml:mi><mml:mo>â^•</mml:mo><mml:mi>Au</mml:mi>magnetic nanodot arrays. Physical Review B, 2008, 77, .</mml:mrow></mml:math 	ow> <td>:math>based</td>	:math>based
81	Symmetry breaking effects in epitaxial magnetic thin films: Nonsymmetric reversal and butterfly remanence behavior. Physical Review B, 2008, 77, .	1.1	20
82	Layer-resolved imaging of domain wall interactions in magnetic tunnel junction-like trilayers. Journal of Physics Condensed Matter, 2007, 19, 476204.	0.7	10
83	Growth, structural, and magnetic characterizations of nanocrystalline γ′-FeNiN(220) thin films. Applied Physics Letters, 2007, 90, 032505.	1.5	10
84	Selfâ€Organized Hexagonal Patterns of Independent Magnetic Nanodots. Advanced Materials, 2007, 19, 4375-4380.	11.1	32
85	Magnetisation reversal of epitaxial films of γ′-Fe4N on Cu(100). Journal of Magnetism and Magnetic Materials, 2007, 316, 321-324.	1.0	29
86	Magnetic and magneto-optical properties of epitaxial cobalt films grown on a corrugated CaF2/Si surface. Physics of the Solid State, 2007, 49, 1481-1491.	0.2	6
87	Soft X-ray resonant magnetic scattering study of magnetization reversal in low dimensional magnetic heterostructures. Applied Surface Science, 2007, 254, 335-338.	3.1	3
88	Influence of topography and Co domain walls on the magnetization reversal of the FeNi layer inFeNiâ^•Al2O3â^•Comagnetic tunnel junctions. Physical Review B, 2006, 74, .	1.1	8
89	Magnetic properties of nanocrystalline FeNiN thin films. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 1442-1447.	0.8	6
90	Magnetization reversal, asymmetry, and role of uncompensated spins in perpendicular exchange coupled systems. Applied Physics Letters, 2006, 89, 232507.	1.5	20

Julio Camarero De Diego

#	Article	IF	CITATIONS
91	Dynamics of Magnetic Domain Wall Motion after Nucleation: Dependence on the Wall Energy. Physical Review Letters, 2006, 96, 097204.	2.9	29
92	Magnetic domain pinning in an anisotropy-engineered GdTbFe thin film. Journal of Applied Physics, 2006, 100, 033904.	1.1	17
93	Magnetic relaxation measurements of exchange biased (Pt/Co) multilayers with perpendicular anisotropy. European Physical Journal B, 2005, 45, 185-190.	0.6	15
94	Mobility of domain wall motion in the permalloy layer of a spin-valve-like trilayer. Journal of Magnetism and Magnetic Materials, 2005, 293, 863-871.	1.0	16
95	Interplay between magnetic anisotropy and interlayer coupling in nanosecond magnetization reversal of spin-valve trilayers. Physical Review B, 2005, 71, .	1.1	8
96	Experimental evidence of a1â^•Hactivation law in nanostructures with perpendicular magnetic anisotropy. Physical Review B, 2005, 71, .	1.1	29
97	Magnetic relaxation of exchange biasedPtâ^•Comultilayers studied by time-resolved Kerr microscopy. Physical Review B, 2005, 72, .	1.1	33
98	Influence of domain wall interactions on nanosecond switching in magnetic tunnel junctions. Physical Review B, 2005, 72, .	1.1	22
99	Imaging of magnetic nanodots on self-organized semiconductor substrates. Physical Review B, 2005, 71, .	1.1	11
100	Origin of the Asymmetric Magnetization Reversal Behavior in Exchange-Biased Systems: Competing Anisotropies. Physical Review Letters, 2005, 95, 057204.	2.9	255
101	Exploring spin valve magnetization reversal dynamics with temporal, spatial and layer resolution: Influence of domain-wall energy. Applied Physics Letters, 2004, 85, 440-442.	1.5	19
102	Time and layer resolved magnetic domain imagig of FeNi/Cu/Co trilayers using x-ray photoelectron emission microscopy (invited). Journal of Applied Physics, 2004, 95, 6533-6536.	1.1	18
103	Switching-mode-dependent magnetic interlayer coupling strength in spin valves and magnetic tunnel junctions. Physical Review B, 2004, 69, .	1.1	33
104	Field dependent exchange coupling in NiO/Co bilayers. Physical Review B, 2003, 67, .	1.1	40
105	Perpendicular Interlayer Coupling inNi80Fe20/NiO/CoTrilayers. Physical Review Letters, 2003, 91, 027201.	2.9	70
106	Time-resolved magnetic domain imaging by x-ray photoemission electron microscopy. Applied Physics Letters, 2003, 82, 2299-2301.	1.5	101
107	Studies of surface diffusion and growth on Cu(111) by means of thermal energy atom scattering. Journal of Physics Condensed Matter, 2002, 14, 6155-6172.	0.7	9
108	Exchange bias with perpendicular anisotropy in (Pt-Co)/sub n/-FeMn multilayers. IEEE Transactions on Magnetics, 2002, 38, 2730-2735.	1.2	45

#	Article	IF	CITATIONS
109	Atomic View of Surfactant Action in Epitaxial Growth: From STM to Computer Simulation. , 2002, , 477-488.		0
110	Element-Selective Nanosecond Magnetization Dynamics in Magnetic Heterostructures. Physical Review Letters, 2001, 86, 3646-3649.	2.9	76
111	Surfactant control of growth and interface quality in granular magnetic {CoCu}/Cu(111) superlattices. Surface Science, 2001, 482-485, 1077-1082.	0.8	2
112	Dynamical properties of magnetization reversal in exchange-coupled NiO/Co bilayers. Physical Review B, 2001, 64, .	1.1	20
113	Influence of film morphology on perpendicular magnetic anisotropy. Physical Review B, 2001, 64, .	1.1	13
114	Effects of reduced dimensionality on the magnetic properties of ultrathin (Co/Cu)[111] films. Journal of Applied Physics, 2001, 89, 7150-7152.	1.1	4
115	Magnetization reversal dynamics in exchange-coupled NiO–Co bilayers. Journal of Applied Physics, 2001, 89, 6585-6587.	1.1	9
116	Reduced coercivity in ferromagnetic Co–Cu coevaporated epitaxial films on Cu(111). Applied Physics Letters, 2000, 77, 889-891.	1.5	4
117	Novel Microscopic Mechanism of Intermixing during Growth on Soft Metallic Substrates. Physical Review Letters, 2000, 84, 4397-4400.	2.9	32
118	Influence of surfactants on atomic diffusion. Surface Science, 2000, 459, 135-148.	0.8	36
119	Structural characterisation and homoepitaxial growth on Cu(111). Surface Science, 2000, 459, 191-205.	0.8	26
120	Thickness-dependent coercivity of ultrathin Co films grown on Cu(111). Journal of Physics Condensed Matter, 2000, 12, 7713-7719.	0.7	26
121	Epitaxial growth of metals with high Ehrlich-Schwoebel barriers and the effect of surfactants. Applied Physics A: Materials Science and Processing, 1999, 69, 553-557.	1.1	25
122	Tailoring epitaxial growth of low-dimensional magnetic structures by using surfactants. Surface Science, 1998, 402-404, 346-350.	0.8	6
123	Magnetic dichroism study of the valence-band structure of perpendicularly magnetized Co/Cu(111). Physical Review B, 1998, 57, 5340-5346.	1.1	12
124	Atomistic Mechanism of Surfactant-Assisted Epitaxial Growth. Physical Review Letters, 1998, 81, 850-853.	2.9	123
125	Direct evidence for complete antiferromagnetic coupling between Co films epitaxially grown on Cu(1) Tj ETQq1 1	0,784314 1.0	t rgBT /Overi
126	Surfactant-Mediated Modification of the Magnetic Properties of Co/Cu(111) Thin Films and	2.9	109

Superlattices. Physical Review Letters, 1996, 76, 4428-4431.

#	Article	IF	CITATIONS
127	Atomic Scale Engineering of Superlattices and Magnetic Wires. Materials Research Society Symposia Proceedings, 1995, 384, 49.	0.1	5
128	Surfactant-Induced Suppression of Twin Formation During Growth of fcc Co/Cu Superlattices on Cu(111). Physical Review Letters, 1994, 73, 2448-2451.	2.9	129
129	A structural characterization of the buffer layer for growth of magnetically coupled Co/Cu superlattices. Journal of Magnetism and Magnetic Materials, 1993, 121, 20-23.	1.0	1
130	Dependence of coercivity on maximum applied field in dynamic magnetization reversal of Co/NiO bilayers. , 0, , .		0
131	Dependence of Neel "orange-peel" coupling on magnetization reversal process. , 0, , .		0
132	90° coupling in NiFe/NiO/Co trilayers. , 0, , .		0
133	High Domain Wall Velocity at Zero Magnetic Field Induced by Low Current Densities in Spin Valve Nanostripes. Applied Physics Express, 0, 2, 023003.	1.1	32