Yasuyuki Nakamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7218510/publications.pdf

Version: 2024-02-01

46 papers

2,440 citations

257450 24 h-index 233421 45 g-index

50 all docs 50 docs citations

50 times ranked

2406 citing authors

#	Article	IF	CITATIONS
1	Cyclic porphyrin arrays as artificial photosynthetic antenna: synthesis and excitation energy transfer. Chemical Society Reviews, 2007, 36, 831.	38.1	389
2	A Directly Fused Tetrameric Porphyrin Sheet and Its Anomalous Electronic Properties That Arise from the Planar Cyclooctatetraene Core. Journal of the American Chemical Society, 2006, 128, 4119-4127.	13.7	226
3	Organotellurium-Mediated Controlled/Living Radical Polymerization Initiated by Direct Câ^'Te Bond Photolysis. Journal of the American Chemical Society, 2009, 131, 2100-2101.	13.7	173
4	Recent progress in the use of photoirradiation in living radical polymerization. Polymer, 2013, 54, 981-994.	3.8	165
5	Directlymesoâ^'mesoLinked Porphyrin Rings:Â Synthesis, Characterization, and Efficient Excitation Energy Hopping. Journal of the American Chemical Society, 2005, 127, 236-246.	13.7	159
6	Intramolecular Energy Transfer within Butadiyne-Linked Chlorophyll and Porphyrin Dimer-Faced, Self-Assembled Prisms. Journal of the American Chemical Society, 2008, 130, 4277-4284.	13.7	119
7	Synthesis of Brominated Directly Fused Diporphyrins through Gold(III)-Mediated Oxidation. Organic Letters, 2006, 8, 4141-4144.	4.6	100
8	Photophysics of <i>meso-</i> ² Doubly Linked Ni(II) Porphyrin Arrays:  Large Two-Photon Absorption Cross-Section and Fast Energy Relaxation Dynamics. Journal of the American Chemical Society, 2007, 129, 10080-10081.	13.7	90
9	Twoâ€Dimensionally Extended Porphyrin Tapes: Synthesis and Shapeâ€Dependent Twoâ€Photon Absorption Properties. Chemistry - A European Journal, 2008, 14, 8279-8289.	3.3	83
10	Photoinduced Switching from Living Radical Polymerization to a Radical Coupling Reaction Mediated by Organotellurium Compounds. Journal of the American Chemical Society, 2012, 134, 5536-5539.	13.7	82
11	Synthesis of meso- \hat{l}^2 doubly linked porphyrin tapes Electronic supplementary information (ESI) available: 1H NMR spectra. See http://www.rsc.org/suppdata/cc/b3/b302032k/. Chemical Communications, 2003, , 1096-1097.	4.1	74
12	Termination Mechanism in the Radical Polymerization of Methyl Methacrylate and Styrene Determined by the Reaction of Structurally Well-Defined Polymer End Radicals. Macromolecules, 2015, 48, 6450-6456.	4.8	74
13	Metal-Dependent Regioselective Oxidative Coupling of 5,10,15-Triarylporphyrins with DDQ-Sc(OTf)3and Formation of an Oxo-quinoidal Porphyrin. Organic Letters, 2003, 5, 2079-2082.	4.6	70
14	Synthesis and characterizations of free base and Cu(II) complex of a porphyrin sheet. Tetrahedron, 2008, 64, 11433-11439.	1.9	45
15	Quantitative Analysis of the Effect of Azo Initiators on the Structure of α-Polymer Chain Ends in Degenerative Chain-Transfer-Mediated Living Radical Polymerization Reactions. Macromolecules, 2011, 44, 8388-8397.	4.8	42
16	Structural Factors Determining Photophysical Properties of Directly Linked Zinc(II) Porphyrin Dimers: Linking Position, Dihedral Angle, and Linkage Length. Journal of Physical Chemistry B, 2009, 113, 10619-10627.	2.6	39
17	Termination Mechanism of the Radical Polymerization of Acrylates. Macromolecular Rapid Communications, 2016, 37, 506-513.	3.9	39
18	Controlled Radical Polymerization of Ethylene Using Organotellurium Compounds. Angewandte Chemie - International Edition, 2018, 57, 305-309.	13.8	39

#	Article	IF	CITATIONS
19	Organotellurium-mediated living radical polymerization under photoirradiation by a low-intensity light-emitting diode. Beilstein Journal of Organic Chemistry, 2013, 9, 1607-1612.	2.2	35
20	Experimental and Theoretical Investigations into the Paratropic Ring Current of a Porphyrin Sheet. Chemistry - an Asian Journal, 2007, 2, 860-866.	3.3	32
21	Mechanism of Cu(l)/Cu(0)-Mediated Reductive Coupling Reactions of Bromine-Terminated Polyacrylates, Polymethacrylates, and Polystyrene. ACS Macro Letters, 2016, 5, 248-252.	4.8	30
22	Thermo-resettable cross-linked polymers for reusable/removable adhesives. Polymer Chemistry, 2018, 9, 5559-5565.	3.9	30
23	Exploration of electronically interactive cyclic porphyrin arrays. Journal of Organometallic Chemistry, 2007, 692, 148-155.	1.8	29
24	Control of the Termination Mechanism in Radical Polymerization by Viscosity: Selective Disproportionation in Viscous Media. Chemistry - A European Journal, 2017, 23, 1299-1305.	3.3	26
25	Fluorescence Dynamics of Directly Mesoâ^'Meso Linked Porphyrin Rings Probed by Single Molecule Spectroscopy. Journal of the American Chemical Society, 2009, 131, 1488-1494.	13.7	24
26	Expanding the Scope of Controlled Radical Polymerization via Cobalt–Tellurium Radical Exchange Reaction. ACS Macro Letters, 2014, 3, 114-118.	4.8	24
27	Bayâ€Area Selective Thermal [4+2] and [4+4] Cycloaddition Reactions of Triply Linked Zn ^{II} Diporphyrin with <i>>o</i> >â€Xylylene. Chemistry - A European Journal, 2008, 14, 204-211.	3.3	23
28	Modular Synthesis of Mid-Chain-Functionalized Polymers by Photoinduced Diene- and Styrene-Assisted Radical Coupling Reaction of Polymer-End Radicals. Macromolecules, 2014, 47, 582-588.	4.8	21
29	Oxidative direct coupling of metalloporphyrins. Journal of Porphyrins and Phthalocyanines, 2003, 07, 264-269.	0.8	20
30	Strengthening epoxy adhesives at elevated temperatures based on dynamic disulfide bonds. Materials Advances, 2020, 1, 3182-3188.	5.4	20
31	Controlled Polymerization of Protic Ionic Liquid Monomer by ARGETâ€ATRP and TERP. Macromolecular Rapid Communications, 2014, 35, 642-648.	3.9	16
32	The Effect of Viscosity on the Diffusion and Termination Reaction of Organic Radical Pairs. Chemistry - A European Journal, 2019, 25, 9846-9850.	3.3	15
33	Regioselective [3+4] cycloaddition of an azomethine ylide to meso–meso, β‑β, βâ€2‑βâ€2 triply linked diporphyrins. Tetrahedron Letters, 2008, 49, 3308-3311.	1.4	13
34	Organotellurium-Mediated Radical Polymerization under Photo Irradiation. ACS Symposium Series, 2015, , 295-309.	0.5	13
35	Controlled Radical Polymerization of Ethylene Using Organotellurium Compounds. Angewandte Chemie, 2018, 130, 311-315.	2.0	13
36	Synthesis of Multivalent Organotellurium Chainâ€Transfer Agents by Postâ€modification and Their Applications in Living Radical Polymerization. Chemistry - A European Journal, 2016, 22, 17006-17010.	3.3	10

#	Article	IF	CITATIONS
37	Mechanochromism of dynamic disulfide bonds as a chromophoric indicator of adhesion strength for epoxy adhesive. Materials Advances, 2021, 2, 5047-5051.	5.4	10
38	1,4-Phenylene-bridged meso–meso linked diporphyrin array. Tetrahedron Letters, 2004, 45, 4981-4984.	1.4	7
39	Progress in the Preparation of Functional and (Bio)Degradable Polymers via Living Polymerizations. International Journal of Molecular Sciences, 2020, 21, 9581.	4.1	7
40	Postprogrammable Network Topology with Broad Gradients of Mechanical Properties for Reliable Polymer Material Engineering. Chemistry of Materials, 2021, 33, 6876-6884.	6.7	4
41	Synthesis of thiophene-containing acyclic alkoxyamine for nitroxide-mediated radical polymerization of acrylates and styrene. Polymer, 2021, 230, 124062.	3.8	4
42	Machine-Learning-Based phase diagram construction for high-throughput batch experiments. Science and Technology of Advanced Materials Methods, 2022, 2, 153-161.	1.3	3
43	Elucidation of the Mechanism and Synthetic Utilization of Termination Reaction of Radical Polymerization Based on Living Radical Polymerization. Kobunshi Ronbunshu, 2018, 75, 444-455.	0.2	1
44	The Effect of Viscosity on the Coupling and Hydrogen-Abstraction Reaction between Transient and Persistent Radicals?. Bulletin of the Chemical Society of Japan, 2021, 94, 966-972.	3.2	1
45	Evidence for Polarity- and Viscosity-Controlled Pathways in the Termination Reaction in the Radical Polymerization of Acrylonitrile. Macromolecules, 2021, 54, 4497-4506.	4.8	1
46	Impact of Telechelic Polymer Precursors on the Viscoelastic Properties of Vitrimers. Macromolecular Chemistry and Physics, 2022, 223, 2100433.	2.2	O