Natalia Shulzhenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7218139/publications.pdf

Version: 2024-02-01

28 papers 2,773 citations

361296 20 h-index 501076 28 g-index

32 all docs 32 docs citations

times ranked

32

4544 citing authors

#	Article	IF	CITATIONS
1	Fecal Implants From AppNL–G–F and AppNL–G–F/E4 Donor Mice Sufficient to Induce Behavioral Phenotypes in Germ-Free Mice. Frontiers in Behavioral Neuroscience, 2022, 16, 791128.	1.0	14
2	Microbiota and adipocyte mitochondrial damage in type 2 diabetes are linked by <i>Mmp12</i> + macrophages. Journal of Experimental Medicine, 2022, 219, .	4.2	24
3	Transkingdom interactions between Lactobacilli and hepatic mitochondria attenuate western diet-induced diabetes. Nature Communications, 2021, 12, 101.	5.8	86
4	Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine, 2020, 51, 102590.	2.7	954
5	Improvements in Metabolic Syndrome by Xanthohumol Derivatives Are Linked to Altered Gut Microbiota and Bile Acid Metabolism. Molecular Nutrition and Food Research, 2020, 64, e1900789.	1.5	32
6	Gut-resident CX3CR1 ^{hi} macrophages induce tertiary lymphoid structures and IgA response in situ. Science Immunology, 2020, 5, .	5.6	63
7	Dietary Indole-3-Carbinol Activates AhR in the Gut, Alters Th17-Microbe Interactions, and Exacerbates Insulitis in NOD Mice. Frontiers in Immunology, 2020, 11, 606441.	2.2	19
8	Commensal bacteria contribute to insulin resistance in aging by activating innate B1a cells. Science Translational Medicine, 2018, 10, .	5.8	121
9	CVID enteropathy is characterized by exceeding low mucosal IgA levels and interferon-driven inflammation possibly related to the presence of a pathobiont. Clinical Immunology, 2018, 197, 139-153.	1.4	66
10	Transkingdom Networks: A Systems Biology Approach to Identify Causal Members of Host–Microbiota Interactions. Methods in Molecular Biology, 2018, 1849, 227-242.	0.4	23
11	Transkingdom network reveals bacterial players associated with cervical cancer gene expression program. PeerJ, 2018, 6, e5590.	0.9	24
12	Mycobacterium tuberculosis Proteome Response to Antituberculosis Compounds Reveals Metabolic "Escape―Pathways That Prolong Bacterial Survival. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	22
13	Interplay between viruses and bacterial microbiota in cancer development. Seminars in Immunology, 2017, 32, 14-24.	2.7	35
14	Multi-omics Comparative Analysis Reveals Multiple Layers of Host Signaling Pathway Regulation by the Gut Microbiota. MSystems, 2017, 2, .	1.7	19
15	Antibiotic-Induced Alterations in Gut Microbiota Are Associated with Changes in Glucose Metabolism in Healthy Mice. Frontiers in Microbiology, 2017, 8, 2306.	1.5	103
16	Arsenic exposure and intestinal microbiota in children from Sirajdikhan, Bangladesh. PLoS ONE, 2017, 12, e0188487.	1.1	41
17	Akkermansia muciniphila mediates negative effects of IFN \hat{I}^3 on glucose metabolism. Nature Communications, 2016, 7, 13329.	5.8	232
18	Unexpected links reflect the noise in networks. Biology Direct, 2016, 11, 52.	1.9	35

#	Article	IF	CITATIONS
19	Investigating a holobiont: Microbiota perturbations and transkingdom networks. Gut Microbes, 2016, 7, 126-135.	4.3	38
20	Differentially correlated genes in co-expression networks control phenotype transitions. F1000Research, 2016, 5, 2740.	0.8	8
21	Reverse enGENEering of Regulatory Networks from Big Data: A Roadmap for Biologists. Bioinformatics and Biology Insights, 2015, 9, BBI.S12467.	1.0	38
22	Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut, 2015, 64, 1732-1743.	6.1	261
23	Ménage à trois: an evolutionary interplay between human papillomavirus, a tumor, and a woman. Trends in Microbiology, 2014, 22, 345-353.	3.5	36
24	Bridging immunity and lipid metabolism by gut microbiota. Journal of Allergy and Clinical Immunology, 2013, 132, 253-262.	1.5	61
25	Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer. Nature Communications, 2013, 4, 1806.	5.8	65
26	Crosstalk between B lymphocytes, microbiota and the intestinal epithelium governs immunity versus metabolism in the gut. Nature Medicine, 2011, 17, 1585-1593.	15.2	323
27	Selection of control genes for quantitative RT-PCR based on microarray data. Biochemical and Biophysical Research Communications, 2005, 337, 306-312.	1.0	18
28	Specificity of Alternative Splice Form Detection Using RT-PCR with a Primer Spanning the Exon Junction. BioTechniques, 2003, 34, 1244-1249.	0.8	8