Reza Karami Mohammadi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7218040/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A semi-active control algorithm for nonlinear structures based on uniform distribution of deformation theory. JVC/Journal of Vibration and Control, 2023, 29, 649-660.	2.6	1
2	Neuro-hybrid simulation of non-linear frames using Prandtl neural networks. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 2022, 175, 94-111.	0.8	3
3	Effects of demand parameters in the performance-based multi-objective optimum design of steel moment frame buildings. Soil Dynamics and Earthquake Engineering, 2022, 153, 107075.	3.8	4
4	An enhanced sequential ground motion selection for risk assessment using a Bayesian updating approach. Journal of Building Engineering, 2022, 46, 103745.	3.4	1
5	Multi-objective optimization for probabilistic performance-based design of buildings using FEMA P-58 methodology. Engineering Structures, 2022, 254, 113856.	5.3	13
6	Probabilistic prediction of engineering demand parameters using Bayesian inference approach. Soil Dynamics and Earthquake Engineering, 2022, 161, 107320.	3.8	2
7	An acceleration-based approach for crack localisation in beams subjected to moving oscillators. JVC/Journal of Vibration and Control, 2021, 27, 489-501.	2.6	5
8	A new swift algorithm for bi-objective optimum design of steel moment frames. Journal of Building Engineering, 2021, 39, 102162.	3.4	2
9	Active control of building structures under seismic load using a new uniform deformation-based control algorithm. Structures, 2021, 33, 593-605.	3.6	8
10	Multi-objective optimal design of steel MRF buildings based on life-cycle cost using a swift algorithm. Structures, 2021, 34, 4041-4059.	3.6	12
11	Damage detection of steel moment frames under earthquake excitation. Structural Control and Health Monitoring, 2020, 27, e2599.	4.0	5
12	Vibration Anatomy and Damage Detection in Power Transmission Towers with Limited Sensors. Sensors, 2020, 20, 1731.	3.8	17
13	Feed-Forward Controlling of Servo-Hydraulic Actuators Utilizing a Least-Squares Support-Vector Machine. Actuators, 2020, 9, 11.	2.3	3
14	A cost-effective neural network–based damage detection procedure for cylindrical equipment. Advances in Mechanical Engineering, 2019, 11, 168781401986694.	1.6	9
15	Optimisation of the mass and damping ratio of the tuned mass damper. Australian Journal of Structural Engineering, 2019, 20, 188-197.	1.1	1
16	Practical method for optimal rehabilitation of steel frame buildings using buckling restrained brace dampers. Soil Dynamics and Earthquake Engineering, 2019, 123, 242-251.	3.8	24
17	Comprehensive nonlinear seismic performance assessment of MR damper controlled systems using virtual realâ€time hybrid simulation. Structural Design of Tall and Special Buildings, 2019, 28, e1606.	1.9	10
18	Determining Structural Resonance Frequency via Low-Cost Micro-Electromechanical Systems. Iranian Journal of Science and Technology - Transactions of Civil Engineering, 2019, 43, 583-590.	1.9	2

#	Article	IF	CITATIONS
19	Framework for virtual hybrid simulation of TADAS frames using opensees and abaqus. JVC/Journal of Vibration and Control, 2018, 24, 2165-2179.	2.6	19
20	Semi-Active Control of Structures Equipped With MR Dampers Based on Uniform Deformation Theory. International Journal of Civil Engineering, 2018, 16, 871-885.	2.0	9
21	Hybrid Simulation of a Frame Equipped with MR Damper by Utilizing Least Square Support Vector Machine. Journal of Numerical Methods in Civil Engineering, 2018, 2, 58-66.	0.3	1
22	Comparison of online model updating methods in pseudo-dynamic hybrid simulations of TADAS frames. Bulletin of Earthquake Engineering, 2017, 15, 4453-4474.	4.1	5
23	TADAS dampers in very large deformations. International Journal of Steel Structures, 2017, 17, 515-524.	1.3	28
24	Implementation of Uniform Deformation Theory in semi-active control of structures using fuzzy controller. Smart Structures and Systems, 2017, 19, 351-360.	1.9	5
25	Effects of uncertainties on seismic behaviour of optimum designed braced steel frames. Steel and Composite Structures, 2016, 20, 317-335.	1.3	17
26	Performance-based design optimization using uniform deformation theory: a comparison study. Latin American Journal of Solids and Structures, 2015, 12, 18-36.	1.0	13
27	An Investigation on Seismic Behavior of Three Interconnected Pieces of Substation Equipment. IEEE Transactions on Power Delivery, 2014, 29, 1613-1620.	4.3	22
28	On the optimum performance-based design of eccentrically braced frames. Steel and Composite Structures, 2014, 16, 357-374.	1.3	13
29	An improvement to seismic design of substation support structures. Structural Engineering and Mechanics, 2013, 45, 821-835.	1.0	2
30	Estimation of Required Slack for Conductors Connecting Substation Equipment Subjected to Earthquake. IEEE Transactions on Power Delivery, 2012, 27, 709-717.	4.3	12
31	Dynamic properties of substation support structures. Journal of Constructional Steel Research, 2012, 78, 173-182.	3.9	23
32	More Efficient Seismic Loading for Multidegrees of Freedom Structures. Journal of Structural Engineering, 2006, 132, 1673-1677.	3.4	13
33	Optimum strength distribution for seismic resistant shear buildings. International Journal of Solids and Structures, 2004, 41, 6597-6612.	2.7	58
34	Approximate Evaluation of Deflection Amplification Factor. Journal of Structural Engineering, 2002, 128, 179-187.	3.4	8