
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7217971/publications.pdf Version: 2024-02-01

Ρλινέα Κοτείλ

#	Article	IF	CITATIONS
1	Fear effects on bank voles (<scp>Rodentia: Arvicolinae</scp>): testing for repellent candidates from predator volatiles. Pest Management Science, 2022, 78, 1677-1685.	3.4	4
2	Evolution of an increased performance under acute challenge does not exacerbate vulnerability to chronic stress. Scientific Reports, 2022, 12, 2126.	3.3	1
3	Artificial selection for predatory behaviour results in dietary niche differentiation in an omnivorous mammal. Proceedings of the Royal Society B: Biological Sciences, 2022, 289, 20212510.	2.6	4
4	Towards streamlined bank vole odor preference evaluation using Y-mazes. Mammal Research, 2020, 65, 1-9.	1.3	2
5	Age-Related Changes in the Thermoregulatory Properties in Bank Voles From a Selection Experiment. Frontiers in Physiology, 2020, 11, 576304.	2.8	7
6	Does selection for behavioral and physiological performance traits alter glucocorticoid responsiveness in bank voles?. Journal of Experimental Biology, 2020, 223, .	1.7	5
7	The metabolic performance predicts home range size of bank voles: a support for the behavioral–bioenergetics theory. Oecologia, 2020, 193, 547-556.	2.0	17
8	The effect of monoamines reuptake inhibitors on aerobic exercise performance in bank voles from a selection experiment. Environmental Epigenetics, 2019, 65, 409-419.	1.8	5
9	ls Experimental Evolution of an Increased Aerobic Exercise Performance in Bank Voles Mediated by Endocannabinoid Signaling Pathway?. Frontiers in Physiology, 2019, 10, 640.	2.8	10
10	Experimental evolution of aerobic exercise performance and hematological traits in bank voles. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2019, 234, 1-9.	1.8	4
11	Stress coping and evolution of aerobic exercise performance: corticosterone levels in voles from a selection experiment. Journal of Experimental Biology, 2019, 222, .	1.7	5
12	Experimental evolution of personality traits: open-field exploration in bank voles from a multidirectional selection experiment. Environmental Epigenetics, 2019, 65, 375-384.	1.8	20
13	A highly divergent Puumala virus lineage in southern Poland. Archives of Virology, 2017, 162, 1177-1185.	2.1	5
14	Sexual dimorphism, asymmetry, and the effect of reproduction on pelvis bone in the bank vole, Myodes glareolus. Mammal Research, 2017, 62, 297-306.	1.3	6
15	Age-related changes of physiological performance and survivorship of bank voles selected for high aerobic capacity. Experimental Gerontology, 2017, 98, 70-79.	2.8	13
16	A Shift in the Thermoregulatory Curve as a Result of Selection for High Activity-Related Aerobic Metabolism. Frontiers in Physiology, 2017, 8, 1070.	2.8	16
17	Experimental Evolution on a Wild Mammal Species Results in Modifications of Gut Microbial Communities. Frontiers in Microbiology, 2016, 7, 634.	3.5	27
18	Genomic Response to Selection for Predatory Behavior in a Mammalian Model of Adaptive Radiation. Molecular Biology and Evolution, 2016, 33, 2429-2440.	8.9	25

#	Article	IF	CITATIONS
19	A dopamine and noradrenaline reuptake inhibitor (bupropion) does not alter exercise performance of bank voles. Environmental Epigenetics, 2016, 62, 307-315.	1.8	11
20	The effect of chlorpyrifos on thermogenic capacity of bank voles selected for increased aerobic exercise metabolism. Chemosphere, 2016, 149, 383-390.	8.2	15
21	Limits to sustained energy intake. XXIII. Does heat dissipation capacity limit the energy budget of lactating bank voles?. Journal of Experimental Biology, 2016, 219, 805-15.	1.7	27
22	Effect of Selection for High Activity-Related Metabolism on Membrane Phospholipid Fatty Acid Composition in Bank Voles. Physiological and Biochemical Zoology, 2015, 88, 668-679.	1.5	6
23	Evolution of basal metabolic rate in bank voles from a multidirectional selection experiment. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150025.	2.6	63
24	Hind limb muscle fibre size and glycogen stores in bank voles with increased aerobic exercise metabolism. Journal of Experimental Biology, 2015, 219, 470-3.	1.7	5
25	Initial Molecular-Level Response to Artificial Selection for Increased Aerobic Metabolism Occurs Primarily through Changes in Gene Expression. Molecular Biology and Evolution, 2015, 32, 1461-1473.	8.9	26
26	Reproduction is not costly in terms of oxidative stress. Journal of Experimental Biology, 2015, 218, 3901-10.	1.7	17
27	Selection for high activity-related aerobic metabolism does not alter the capacity of non-shivering thermogenesis in bank voles. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2015, 180, 51-56.	1.8	13
28	Learning ability in bank voles selected for high aerobic metabolism, predatory behaviour and herbivorous capability. Physiology and Behavior, 2014, 135, 143-151.	2.1	13
29	First Molecular Evidence for Puumala Hantavirus in Poland. Viruses, 2014, 6, 340-353.	3.3	17
30	Accuracy of allele frequency estimation using pooled <scp>RNA</scp> â€Seq. Molecular Ecology Resources, 2014, 14, 381-392.	4.8	54
31	Genetic Variation in Bank Vole Populations in Natural and Metal-Contaminated Areas. Archives of Environmental Contamination and Toxicology, 2014, 67, 535-546.	4.1	13
32	Development of hyperglycemia and diabetes in captive Polish bank voles. General and Comparative Endocrinology, 2013, 183, 69-78.	1.8	5
33	Prenatal Treatment of Mosaic Mice (Atp7a mo-ms) Mouse Model for Menkes Disease, with Copper Combined by Dimethyldithiocarbamate (DMDTC). PLoS ONE, 2012, 7, e40400.	2.5	14
34	ls reproduction costly? No increase of oxidative damage in breeding bank voles. Journal of Experimental Biology, 2012, 215, 1799-1805.	1.7	67
35	Using new tools to solve an old problem: the evolution of endothermy in vertebrates. Trends in Ecology and Evolution, 2011, 26, 414-423.	8.7	69
36	Low inbreeding depression in a sexual trait in the stalk-eyed fly Teleopsis dalmanni. Evolutionary Ecology, 2010, 24, 827-837.	1.2	22

#	Article	IF	CITATIONS
37	Heart transcriptome of the bank vole (Myodes glareolus): towards understanding the evolutionary variation in metabolic rate. BMC Genomics, 2010, 11, 390.	2.8	22
38	Sexual and natural selection on body mass and metabolic rates in freeâ€living bank voles. Functional Ecology, 2010, 24, 1252-1261.	3.6	79
39	Comparative study of murid gammaherpesvirus 4 infection in mice and in a natural host, bank voles. Journal of General Virology, 2010, 91, 2553-2563.	2.9	27
40	Laboratory model of adaptive radiation: Activity and metabolic rates in bank voles from a multidirectional artificial selection experiment. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2009, 153, S146.	1.8	5
41	The association between body mass, metabolic rates and survival of bank voles. Functional Ecology, 2009, 23, 330-339.	3.6	96
42	GENETIC CORRELATIONS IN A WILD RODENT: GRASS-EATERS AND FAST-GROWERS EVOLVE HIGH BASAL METABOLIC RATES. Evolution; International Journal of Organic Evolution, 2009, 63, 1530-1539.	2.3	55
43	Selection Experiments and Experimental Evolution of Performance and Physiology. , 2009, , 301-351.		28
44	Laboratory Model of Adaptive Radiation: A Selection Experiment in the Bank Vole. Physiological and Biochemical Zoology, 2008, 81, 627-640.	1.5	74
45	4.P2. Basal metabolic rate and life history in the bank vole, Myodes glareolus. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2007, 148, S20.	1.8	2
46	GENETIC CORRELATIONS BETWEEN BASAL AND MAXIMUM METABOLIC RATES IN A WILD RODENT: CONSEQUENCES FOR EVOLUTION OF ENDOTHERMY. Evolution; International Journal of Organic Evolution, 2005, 59, 672-681.	2.3	144
47	GENETIC CORRELATIONS BETWEEN BASAL AND MAXIMUM METABOLIC RATES IN A WILD RODENT: CONSEQUENCES FOR EVOLUTION OF ENDOTHERMY. Evolution; International Journal of Organic Evolution, 2005, 59, 672.	2.3	8
48	Genetic correlations between basal and maximum metabolic rates in a wild rodent: consequences for evolution of endothermy. Evolution; International Journal of Organic Evolution, 2005, 59, 672-81.	2.3	33
49	The Evolution of Concepts on the Evolution of Endothermy in Birds and Mammals. Physiological and Biochemical Zoology, 2004, 77, 1043-1050.	1.5	81
50	Individual variation and repeatability of basal metabolism in the bank vole,Clethrionomys glareolus. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 367-372.	2.6	91
51	Contest winning and metabolic competence in male bank voles Clethrionomys glareolus. Behaviour, 2004, 141, 343-354.	0.8	17
52	Food wasting by house mice: variation among individuals, families, and genetic lines. Physiology and Behavior, 2003, 80, 375-383.	2.1	50
53	Different Effects of Intensity and Duration of Locomotor Activity on Circadian Period. Journal of Biological Rhythms, 2003, 18, 491-501.	2.6	21
54	Maternal-care behavior and life-history traits in house mice (Mus domesticus) artificially selected for high voluntary wheel-running activity. Behavioural Processes, 2002, 57, 37-50.	1.1	34

#	Article	IF	CITATIONS
55	Energy balance of hibernating mouse-eared batMyotis myotis: a study with a TOBEC instrument. Acta Theriologica, 2001, 46, 1-12.	1.1	10
56	Food consumption and body composition in mice selected for high wheel-running activity. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2001, 171, 651-659.	1.5	117
57	Body temperatures of house mice artificially selected for high voluntary wheel-running behavior: repeatability and effect of genetic selection. Journal of Thermal Biology, 2000, 25, 391-400.	2.5	52
58	Energy assimilation, parental care and the evolution of endothermy. Proceedings of the Royal Society B: Biological Sciences, 2000, 267, 479-484.	2.6	158
59	Individual variation and repeatability of maximum cold-induced energy assimilation in house mice. Acta Theriologica, 2000, 45, 455-470.	1.1	14
60	Energy Cost of Wheel Running in House Mice: Implications for Coadaptation of Locomotion and Energy Budgets. Physiological and Biochemical Zoology, 1999, 72, 238-249.	1.5	103
61	Behaviour of house mice artificially selected for high levels of voluntary wheel running. Animal Behaviour, 1999, 58, 1307-1318.	1.9	125
62	Limits to the Energy Budget in a Rodent, <i>Peromyscus maniculatus:</i> Does Gut Capacity Set the Limit?. Physiological Zoology, 1996, 69, 994-1020.	1.5	107
63	Limits to the Energy Budget in a Rodent, <i>Peromyscus maniculatus:</i> The Central Limitation Hypothesis. Physiological Zoology, 1996, 69, 981-993.	1.5	56
64	Measuring Energy Metabolism with Open-Flow Respirometric Systems: Which Design to Choose?. Functional Ecology, 1996, 10, 675.	3.6	127
65	The usefulness of a new TOBEC instrument (ACAN) for investigating body composition in small mammals. Acta Theriologica, 1996, 41, 107-112.	1.1	6
66	Maximum cold-induced energy assimilation in a rodent, Apodemus flavicollis. Comparative Biochemistry and Physiology A, Comparative Physiology, 1995, 112, 479-485.	0.6	15
67	New way of body composition analysis using total body electrical conductivity method. Review of Scientific Instruments, 1995, 66, 3037-3041.	1.3	10
68	Mice, Voles and Hamsters: Metabolic Rates and Adaptive Strategies in Muroid Rodents. Oikos, 1993, 66, 505.	2.7	41
69	On the Relation Between Basal and Field Metabolic Rates in Birds and Mammals. Functional Ecology, 1991, 5, 56.	3.6	123
70	Basal Metabolic Rate in the Gray Wolf in Poland. Journal of Wildlife Management, 1987, 51, 800.	1.8	13
71	On the relation between basal and maximum metabolic rate in mammals. Comparative Biochemistry and Physiology A, Comparative Physiology, 1987, 87, 205-208.	0.6	80
72	Maximum Cold-Induced Oxygen Consumption in the House Sparrow Passer domesticus L Physiological Zoology, 1986, 59, 43-48.	1.5	29