Sougata Ghosh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7217792/publications.pdf

Version: 2024-02-01

172457 197818 2,755 115 29 49 citations h-index g-index papers 126 126 126 3082 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. International Journal of Nanomedicine, 2012, 7, 483.	6.7	288
2	Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. Journal of Nanobiotechnology, 2012, 10, 17.	9.1	174
3	Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control. International Journal of Nanomedicine, 2014, 9, 2635.	6.7	127
4	Dual Drug Conjugated Nanoparticle for Simultaneous Targeting of Mitochondria and Nucleus in Cancer Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7584-7598.	8.0	105
5	Diosgenin from Dioscorea bulbifera: Novel Hit for Treatment of Type II Diabetes Mellitus with Inhibitory Activity against α-Amylase and α-Glucosidase. PLoS ONE, 2014, 9, e106039.	2.5	96
6	Antidiabetic Activity of (i) Gnidia glauca (i) and (i) Dioscorea bulbifera (i): Potent Amylase and Glucosidase Inhibitors. Evidence-based Complementary and Alternative Medicine, 2012, 2012, 1-10.	1.2	78
7	Diosgenin Functionalized Iron Oxide Nanoparticles as Novel Nanomaterial Against Breast Cancer. Journal of Nanoscience and Nanotechnology, 2015, 15, 9464-9472.	0.9	78
8	<i>Gloriosa superba</i> Mediated Synthesis of Platinum and Palladium Nanoparticles for Induction of Apoptosis in Breast Cancer. Bioinorganic Chemistry and Applications, 2018, 2018, 1-9.	4.1	77
9	Novel platinum–palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities. International Journal of Nanomedicine, 2015, 10, 7477.	6.7	75
10	Phytochemical Analysis and Free Radical Scavenging Activity of Medicinal Plants Gnidia glauca and Dioscorea bulbifera. PLoS ONE, 2013, 8, e82529.	2.5	70
11	ZnO Nanoparticles-Red Sandalwood Conjugate: A Promising Anti-Diabetic Agent. Journal of Nanoscience and Nanotechnology, 2015, 15, 4046-4051.	0.9	70
12	Bacteriogenic Platinum Nanoparticles for Application in Nanomedicine. Frontiers in Chemistry, 2021, 9, 624344.	3.6	70
13	Synthesis of Gold Nanoanisotrops Using <i>Dioscorea bulbifera</i> Tuber Extract. Journal of Nanomaterials, 2011, 2011, 1-8.	2.7	66
14	Nanomaterials in Wound Healing and Infection Control. Antibiotics, 2021, 10, 473.	3.7	63
15	<i>Dioscorea bulbifera</i> Mediated Synthesis of Novel Au _{core} Ag _{shell} Nanoparticles with Potent Antibiofilm and Antileishmanial Activity. Journal of Nanomaterials, 2015, 2015, 1-12.	2.7	62
16	Surface defect rich ZnO quantum dots as antioxidants inhibiting $\hat{l}\pm$ -amylase and $\hat{l}\pm$ -glucosidase: a potential anti-diabetic nanomedicine. Journal of Materials Chemistry B, 2015, 3, 4597-4606.	5.8	57
17	<i>Adiantum philippense</i> L. Frond Assisted Rapid Green Synthesis of Gold and Silver Nanoparticles. Journal of Nanoparticles, 2013, 2013, 1-9.	1.4	56
18	Synthesis, computational study and glycosidase inhibitory activity of polyhydroxylated conidine alkaloids—a bicyclic iminosugar. Organic and Biomolecular Chemistry, 2010, 8, 3307.	2.8	50

#	Article	IF	CITATIONS
19	Synthesis, crystal structure and antidiabetic activity of substituted (E)-3-(Benzo [d]thiazol-2-ylamino) phenylprop-2-en-1-one. European Journal of Medicinal Chemistry, 2013, 59, 304-309.	5.5	50
20	Enhanced Sunlight-Driven Photocatalytic and Antibacterial Activities of Flower-Like ZnO@MoS2 Nanocomposite. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	46
21	Synthesis of 1,5-Dideoxy-1,5-iminoribitol C-Glycosides through a Nitrone–Olefin Cycloaddition Domino Strategy: Identification of Pharmacological Chaperones of Mutant Human Lysosomal β-Galactosidase. Journal of Organic Chemistry, 2014, 79, 4398-4404.	3.2	45
22	Copper and palladium nanostructures: a bacteriogenic approach. Applied Microbiology and Biotechnology, 2018, 102, 7693-7701.	3.6	45
23	Effect of silver doping on antidiabetic and antioxidant potential of ZnO nanorods. Journal of Trace Elements in Medicine and Biology, 2020, 58, 126448.	3.0	44
24	<i>Gnidia glauca</i> - and <i>Plumbago zeylanica</i> - Mediated Synthesis of Novel Copper Nanoparticles as Promising Antidiabetic Agents. Advances in Pharmacological Sciences, 2019, 2019, 1-11.	3.7	41
25	Platanus orientalis Leaf Mediated Rapid Synthesis of Catalytic Gold and Silver Nanoparticles. Journal of Nanomedicine & Nanotechnology, 2018, 09, .	1.1	38
26	Fe3O4-citrate-curcumin: Promising conjugates for superoxide scavenging, tumor suppression and cancer hyperthermia. Journal of Applied Physics, 2012, 111, .	2.5	35
27	Barleria prionitis Leaf Mediated Synthesis of Silver and Gold Nanocatalysts. Journal of Nanomedicine & Nanotechnology, 2016, 7, .	1.1	35
28	Antidiabetic and Antioxidant Properties of Copper Nanoparticles Synthesized by Medicinal Plant Dioscorea bulbifera. Journal of Nanomedicine & Nanotechnology, 0, s6, .	1.1	33
29	Gnidia glauca Leaf and Stem Extract Mediated Synthesis of Gold Nanocatalysts with Free Radical Scavenging Potential. Journal of Nanomedicine & Nanotechnology, 2016, 07, .	1.1	33
30	Synthesis, DNA interaction and anticancer activity of 2-anthryl substituted benzimidazole derivatives. New Journal of Chemistry, 2015, 39, 4882-4890.	2.8	31
31	Antimicrobial Synergy of Silver-Platinum Nanohybrids With Antibiotics. Frontiers in Microbiology, 2020, 11, 610968.	3.5	31
32	A Simple, Efficient Synthesis of 2-Aryl Benzimidazoles Using Silica Supported Periodic Acid Catalyst and Evaluation of Anticancer Activity. ISRN Organic Chemistry, 2013, 2013, 1-7.	1.0	29
33	<l>Curcumin</l> -Loaded, Self-Assembled <l>Aloevera</l> Template for Superior Antioxidant Activity and Trans-Membrane Drug Release. Journal of Nanoscience and Nanotechnology, 2015, 15, 4039-4045.	0.9	29
34	Mesoporous Silica Based Nanostructures for Bone Tissue Regeneration. Frontiers in Materials, 2021, 8,	2.4	28
35	Nanobiotechnological prospects of probiotic microflora: Synthesis, mechanism, and applications. Science of the Total Environment, 2022, 838, 156212.	8.0	27
36	Phytochemsitry and Therapeutic Potential of Medicinal Plant: Dioscorea bulbifera., 2015, 5,.		25

#	Article	IF	Citations
37	Development, dynamics and control of antimicrobial-resistant bacterial biofilms: a review. Environmental Chemistry Letters, 2021, 19, 1983-1993.	16.2	25
38	Functionalized Chitosan Nanomaterials: A Jammer for Quorum Sensing. Polymers, 2021, 13, 2533.	4.5	22
39	Design and synthesis of harzialactone analogues: Promising anticancer agents. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 7243-7245.	2.2	21
40	Inhibition of biofilm formation and quorum sensing mediated virulence in Pseudomonas aeruginosa by marine sponge symbiont Brevibacterium casei strain Alu 1. Microbial Pathogenesis, 2021, 150, 104693.	2.9	20
41	Metallic Nanoscaffolds as Osteogenic Promoters: Advances, Challenges and Scope. Metals, 2021, 11, 1356.	2.3	19
42	Synthesis and glycosidase inhibitory activity of novel (2-phenyl-4H-benzopyrimedo[2,1-b]-thiazol-4-yliden)acetonitrile derivatives. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 7011-7014.	2.2	18
43	Metallic biomaterial for bone support and replacement. , 2018, , 139-165.		18
44	Photosynthetic microbes in nanobiotechnology: Applications and perspectives. Science of the Total Environment, 2022, 841, 156457.	8.0	18
45	Synthesis of an Adenine Nucleoside Containing the (8′ <i>R</i>) Epimeric Carbohydrate Core of Amipurimycin and Its Biological Study. Journal of Organic Chemistry, 2011, 76, 2892-2895.	3.2	16
46	Diazaspiro-iminosugars and polyhydroxylated spiro-bislactams: synthesis, glycosidase inhibition and molecular docking studies. RSC Advances, 2015, 5, 52907-52915.	3.6	16
47	Mesoporous Silica-Based Nano Drug-Delivery System Synthesis, Characterization, and Applications. , 2019, , 285-317.		16
48	Dye degradation and antimicrobial applications of manganese ferrite nanoparticles synthesized by plant extracts. Chemical Physics Impact, 2022, 5, 100098.	3.5	16
49	Polyhydroxylated azetidine iminosugars: Synthesis, glycosidase inhibitory activity and molecular docking studies. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5291-5295.	2.2	15
50	Dioscorea oppositifolia Mediated Synthesis of Gold and Silver Nanoparticles with Catalytic Activity. Journal of Nanomedicine & Nanotechnology, 2016, 07, .	1.1	13
51	Gloriosa superba Mediated Synthesis of Silver and Gold Nanoparticles for Anticancer Applications. Journal of Nanomedicine & Nanotechnology, 2016, 7, .	1.1	12
52	î ³ -Hydroxyethyl piperidine iminosugar and N-alkylated derivatives: A study of their activity as glycosidase inhibitors and as immunosuppressive agents. Bioorganic and Medicinal Chemistry, 2014, 22, 5776-5782.	3.0	11
53	Novel Anticancer Platinum and Palladium Nanoparticles from Barleria prionitis. Global Journal of Nanomedicine, 2017, 2, .	0.1	10
54	Synthesis of anomeric 1,5-anhydrosugars as conformationally locked selective \hat{l}_{\pm} -mannosidase inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 6720-6725.	3.0	9

#	Article	IF	CITATIONS
55	Nanomaterials as Enhanced Antimicrobial Agent/Activity-Enhancer for Transdermal Applications: A Review., 2017,, 279-321.		9
56	Hybrid Nanostructures for In Vivo Imaging. , 2019, , 173-208.		8
57	Endophytic Microbiomes and Their Plant Growth-Promoting Attributes for Plant Health. Environmental and Microbial Biotechnology, 2021, , 245-278.	0.7	8
58	Physically responsive nanostructures in breast cancer theranostics., 0,, 2-1-2-24.		7
59	Evaluation of malonic acid diamide analogues as radical scavenging agents. New Journal of Chemistry, 2015, 39, 1267-1273.	2.8	6
60	Nanoparticle-impregnated biopolymers as novel antimicrobial nanofilms. , 2021, , 269-309.		6
61	Microbial biosorbents for heavy metal removal. , 2021, , 213-262.		6
62	Biofilm Producing Enterococcus Isolates from Vaginal Microbiota. Antibiotics, 2021, 10, 1082.	3.7	6
63	Bioremediation—the natural solution. , 2021, , 11-40.		5
64	Heavy Metal Removal by Bacillus for Sustainable Agriculture. Bacilli in Climate Resilient Agriculture and Bioprospecting, 2022 , , 1 - 30 .	1.2	5
65	Nanotechnology for water processing. , 2021, , 335-360.		4
66	Arsenic Removal Using Nanotechnology. , 2021, , 73-102.		4
67	Biologically synthesized nanoparticles for dye removal. , 2022, , 573-604.		4
68	Control of Bacterial Biofilms for Mitigating Antimicrobial Resistance. Sustainable Agriculture Reviews, 2020, , 147-176.	1.1	4
69	Can EDTA Change MRSA into MSSA? A Future Prospective!. Journal of Clinical and Diagnostic Research JCDR, 2016, 10, DC22-5.	0.8	4
70	Microbial remediation of metals by marine bacteria., 2022, , 131-158.		4
71	Recent trends in fungal biosynthesis of nanoparticles. , 2021, , 403-452.		3
72	Functionalized biogenic nanoparticles and their applications. , 2021, , 303-322.		3

#	Article	IF	CITATIONS
73	Removal of heavy metals by microbial communities. , 2021, , 537-566.		3
74	Editorial: Nanomicrobiology: Emerging Trends in Microbial Synthesis of Nanomaterials and Their Applications. Frontiers in Microbiology, 2021, 12, 751693.	3.5	3
75	Collagen Based 3D Printed Scaffolds for Tissue Engineering. , 0, , .		3
76	Cyanobacteria mediated toxic metal removal as complementary and alternative wastewater treatment strategy., 2022,, 533-548.		3
77	Nanoherbicides for field applications. , 2022, , 439-463.		3
78	Commentary on Therapeutic Potential of Gnidia glauca: A Novel Medicinal Plant., 2015,,.		2
79	Viruses and nanotechnology. , 2021, , 133-143.		2
80	Bioprospecting of novel algal species with nanobiotechnology. , 2022, , 41-74.		2
81	Mycogenic synthesis of metallic nanostructures and their use in dye degradation. , 2021, , 509-526.		2
82	0.5ÂV Two-Stage Subthreshold Fully Differential Miller Compensated OTA Using Voltage Combiners. Lecture Notes in Electrical Engineering, 2020, , 463-479.	0.4	2
83	Medicinal Prospects of Marine Flora and Fauna for Drug Discovery. , 2020, , 321-345.		2
84	Microbially synthesized nanoparticles: aspect in plant disease management., 2022,, 303-325.		2
85	Exosome-associated host–pathogen interaction: a potential effect of biofilm formation. Journal of Analytical Science and Technology, 2021, 12, .	2.1	2
86	Arsenic removing prokaryotes as potential biofilters. , 2022, , 65-86.		2
87	Synergistic Bacteriostatic Effect of Streptomycin-Coated Nanomagnetic Functional Oxides. BioNanoScience, 2022, 12, 62-73.	3.5	2
88	Emerging dye contaminants of industrial origin and their enzyme-assisted biodegradation. , 2022, , 79-102.		2
89	Regulatory affairs, commercialization, and economic aspects of nanomaterials used for agriculture. , 2022, , 479-502.		2
90	Plant growth promoting bacteria as biocontrol agents against diseases of cereal crops., 2021,, 221-239.		1

#	Article	IF	CITATIONS
91	Sustainable agricultural practices using microbial strains for crop production. , 2021, , 357-370.		1
92	Patents, technology transfer, and commercialization aspects of biogenicÂnanoparticles. , 2021, , 323-339.		1
93	Nanobiotechnology of the plant microbiome. , 2021, , 349-367.		1
94	Editorial: Microbial Fabrication of Nanomaterials and Their Applications. Frontiers in Chemistry, 2021, 9, 739739.	3.6	1
95	High photocatalytic activity under visible light for dye degradation. , 2021, , 141-166.		1
96	Application of doped semiconductors in the degradation of dyes., 2021,, 631-646.		1
97	Nanopharmacokinetics: key role in in vivo imaging. , 2021, , 233-251.		1
98	Sapindus mukorossi as Novel Niche for Detergent Degrading Bacteria. SSRN Electronic Journal, 0, , .	0.4	1
99	Nanobiomaterials for three-dimensional bioprinting. , 2022, , 1-24.		1
100	Electroactive biofilm and electron transfer in MES. , 2022, , 87-101.		1
101	Nanotechnological advances for oil spill management: removal, recovery and remediation. , 2022, , $175-194$.		1
102	Nanomaterials for sensors: Synthesis and applications. , 2022, , 477-492.		1
103	Fungi in Pharmaceuticals and Production of Antibiotics. Fungal Biology, 2022, , 233-257.	0.6	1
104	Microbial consortium and crop improvement: Advantages and limitations., 2022,, 109-123.		1
105	Microbial Removal of Toxic Chromium for Wastewater Treatment. , 2021, , 185-204.		0
106	A COMPARATIVE STUDY ON DIFFERENT PHENOTYPIC METHODS FOR DETECTION OF METALLO BETA LACTAMASE PRODUCING BACTERIA IN A TERTIARY HOSPITAL OF EASTERN INDIA. Journal of Evolution of Medical and Dental Sciences, 2014, 3, 12602-12611.	0.1	0
107	AucoreAgshell nanoparticles with potent antibiofilm activity as novel nanomedicine. , 2016, , .		0
108	Impact of climate change on microbial endophytes: novel nanoscale cell factories. , 2022, , 161-185.		0

Sougata Ghosh

#	Article	IF	CITATIONS
109	Molecular Approaches for Removal of Toxic Metal by Genetically Modified Microbes. , 2022, , 47-60.		O
110	Metal stress removal and nanotechnology-driven solutions. , 2022, , 129-153.		0
111	Role of engineered nanomaterials in sustainable agriculture and crop production., 2022,, 371-387.		0
112	Crop-mediated synthesis of nanoparticles and their applications. , 2022, , 23-54.		0
113	Nanoparticles for effective management of salinity stress in plants. , 2022, , 189-216.		О
114	Autotrophic nitrification in bacteria., 2022,, 41-60.		0
115	Microbial chromium removal as sustainable water treatment strategy. , 2022, , 419-444.		0