
Hideho Okada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7217730/publications.pdf Version: 2024-02-01

Ηίδεμο Οκλόλ

#	Article	IF	CITATIONS
1	A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Science Translational Medicine, 2017, 9, .	12.4	1,116
2	Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature, 2019, 565, 240-245.	27.8	637
3	Immunotherapy response assessment in neuro-oncology: a report of the RANO working group. Lancet Oncology, The, 2015, 16, e534-e542.	10.7	582
4	Induction of CD8 ⁺ T-Cell Responses Against Novel Glioma–Associated Antigen Peptides and Clinical Activity by Vaccinations With α-Type 1 Polarized Dendritic Cells and Polyinosinic-Polycytidylic Acid Stabilized by Lysine and Carboxymethylcellulose in Patients With Recurrent Malignant Glioma. Journal of Clinical Oncology, 2011, 29, 330-336.	1.6	519
5	Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment. Genome Biology, 2017, 18, 234.	8.8	448
6	Classification of current anticancer immunotherapies. Oncotarget, 2014, 5, 12472-12508.	1.8	395
7	Rational development and characterization of humanized anti–EGFR variant III chimeric antigen receptor T cells for glioblastoma. Science Translational Medicine, 2015, 7, 275ra22.	12.4	369
8	lsocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. Journal of Clinical Investigation, 2017, 127, 1425-1437.	8.2	334
9	COX-2 Blockade Suppresses Gliomagenesis by Inhibiting Myeloid-Derived Suppressor Cells. Cancer Research, 2011, 71, 2664-2674.	0.9	331
10	SynNotch-CAR T cells overcome challenges of specificity, heterogeneity, and persistence in treating glioblastoma. Science Translational Medicine, 2021, 13, .	12.4	215
11	Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. Journal of Experimental Medicine, 2018, 215, 141-157.	8.5	186
12	STING Contributes to Antiglioma Immunity via Triggering Type I IFN Signals in the Tumor Microenvironment. Cancer Immunology Research, 2014, 2, 1199-1208.	3.4	185
13	GM-CSF Promotes the Immunosuppressive Activity of Glioma-Infiltrating Myeloid Cells through Interleukin-4 Receptor-α. Cancer Research, 2013, 73, 6413-6423.	0.9	169
14	Antigen-Specific Immune Responses and Clinical Outcome After Vaccination With Glioma-Associated Antigen Peptides and Polyinosinic-Polycytidylic Acid Stabilized by Lysine and Carboxymethylcellulose in Children With Newly Diagnosed Malignant Brainstem and Nonbrainstem Gliomas. Journal of Clinical Oncology, 2014, 32, 2050-2058.	1.6	167
15	Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. Journal of Translational Medicine, 2007, 5, 10.	4.4	161
16	Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic T-lymphocytes by down-regulation of ICAM-1. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10746-10751.	7.1	161
17	Systemic delivery of neutralizing antibody targeting CCL2 for glioma therapy. Journal of Neuro-Oncology, 2011, 104, 83-92.	2.9	152
18	Antigenic Profiling of Glioma Cells to Generate Allogeneic Vaccines or Dendritic Cell–Based Therapeutics. Clinical Cancer Research, 2007, 13, 566-575.	7.0	146

#	Article	IF	CITATIONS
19	Immunotherapeutic Approaches for Glioma. Critical Reviews in Immunology, 2009, 29, 1-42.	0.5	132
20	EphA2 as a Glioma-Associated Antigen: A Novel Target for Glioma Vaccines. Neoplasia, 2005, 7, 717-722.	5.3	126
21	IDH mutant gliomas escape natural killer cell immune surveillance by downregulation of NKG2D ligand expression. Neuro-Oncology, 2016, 18, 1402-1412.	1.2	126
22	Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models. Oncolmmunology, 2018, 7, e1501137.	4.6	120
23	Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas. Journal of Translational Medicine, 2007, 5, 67.	4.4	112
24	The immune suppressive microenvironment of human gliomas depends on the accumulation of bone marrow-derived macrophages in the center of the lesion. , 2019, 7, 58.		109
25	Systemic Inhibition of Transforming Growth Factor-β in Glioma-Bearing Mice Improves the Therapeutic Efficacy of Glioma-Associated Antigen Peptide Vaccines. Clinical Cancer Research, 2009, 15, 6551-6559.	7.0	106
26	Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive Tc1-type immunity. Cancer Research, 2003, 63, 6378-86.	0.9	105
27	Inhibition of STAT3 Promotes the Efficacy of Adoptive Transfer Therapy Using Type-1 CTLs by Modulation of the Immunological Microenvironment in a Murine Intracranial Glioma. Journal of Immunology, 2008, 180, 2089-2098.	0.8	99
28	Effective Immunotherapy against Murine Gliomas Using Type 1 Polarizing Dendritic Cells—Significant Roles of CXCL10. Cancer Research, 2009, 69, 1587-1595.	0.9	99
29	Identification of a novel HLA-A*0201-restricted, cytotoxic T lymphocyte epitope in a human glioma-associated antigen, interleukin 13 receptor alpha2 chain. Clinical Cancer Research, 2002, 8, 2851-5.	7.0	99
30	Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors. Cancer Gene Therapy, 2005, 12, 757-768.	4.6	98
31	Bone marrow-derived dendritic cells pulsed with a tumor-specific peptide elicit effective anti-tumor immunity against intracranial neoplasms. , 1998, 78, 196-201.		95
32	MicroRNAs and STAT interplay. Seminars in Cancer Biology, 2012, 22, 70-75.	9.6	94
33	Induction of Robust Type-I CD8+ T-cell Responses in WHO Grade 2 Low-Grade Glioma Patients Receiving Peptide-Based Vaccines in Combination with Poly-ICLC. Clinical Cancer Research, 2015, 21, 286-294.	7.0	92
34	Exosomes isolated from plasma of glioma patients enrolled in a vaccination trial reflect antitumor immune activity and might predict survival. OncoImmunology, 2015, 4, e1008347.	4.6	91
35	Expression and prognostic impact of immune modulatory molecule PD-L1 in meningioma. Journal of Neuro-Oncology, 2016, 130, 543-552.	2.9	90
36	Expression of miR-17-92 enhances anti-tumor activity of T-cells transduced with the anti-EGFRvIII chimeric antigen receptor in mice bearing human GBM xenografts. , 2013, 1, 21.		85

#	Article	IF	CITATIONS
37	Adoptive Transfer of Type 1 CTL Mediates Effective Anti–Central Nervous System Tumor Response: Critical Roles of IFN-Inducible Protein-10. Cancer Research, 2006, 66, 4478-4487.	0.9	84
38	Poly-ICLC promotes the infiltration of effector T cells into intracranial gliomas via induction of CXCL10 in IFN-α and IFN-Î ³ dependent manners. Cancer Immunology, Immunotherapy, 2010, 59, 1401-1409.	4.2	83
39	Combination of an agonistic anti-CD40 monoclonal antibody and the COX-2 inhibitor celecoxib induces anti-glioma effects by promotion of type-1 immunity in myeloid cells and T-cells. Cancer Immunology, Immunotherapy, 2014, 63, 847-857.	4.2	82
40	Role of Type 1 IFNs in Antiglioma Immunosurveillance—Using Mouse Studies to Guide Examination of Novel Prognostic Markers in Humans. Clinical Cancer Research, 2010, 16, 3409-3419.	7.0	80
41	MicroRNAs in immune regulation—Opportunities for cancer immunotherapy. International Journal of Biochemistry and Cell Biology, 2010, 42, 1256-1261.	2.8	78
42	Expression of glioma-associated antigens in pediatric brain stem and non-brain stem gliomas. Journal of Neuro-Oncology, 2008, 88, 245-250.	2.9	77
43	Premetastatic soil and prevention of breast cancer brain metastasis. Neuro-Oncology, 2013, 15, 891-903.	1.2	76
44	Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of recurrent glioblastoma: preliminary observations in a patient with a favorable response to therapy. Journal of Neuro-Oncology, 2003, 64, 13-20.	2.9	74
45	Absence of Stat1 in donor CD4+ T cells promotes the expansion of Tregs and reduces graft-versus-host disease in mice. Journal of Clinical Investigation, 2011, 121, 2554-2569.	8.2	72
46	LOH in the HLA Class I Region at 6p21 Is Associated with Shorter Survival in Newly Diagnosed Adult Glioblastoma. Clinical Cancer Research, 2013, 19, 1816-1826.	7.0	70
47	Mass cytometry detects H3.3K27M-specific vaccine responses in diffuse midline glioma. Journal of Clinical Investigation, 2020, 130, 6325-6337.	8.2	70
48	Immune responses and outcome after vaccination with glioma-associated antigen peptides and poly-ICLC in a pilot study for pediatric recurrent low-grade gliomas. Neuro-Oncology, 2016, 18, 1157-1168.	1.2	69
49	miR-17-92 expression in differentiated T cells - implications for cancer immunotherapy. Journal of Translational Medicine, 2010, 8, 17.	4.4	67
50	Suppression of CD44 expression decreases migration and invasion of human glioma cells. International Journal of Cancer, 1996, 66, 255-260.	5.1	66
51	Immunotherapy of Primary Brain Tumors: Facts and Hopes. Clinical Cancer Research, 2018, 24, 5198-5205.	7.0	66
52	Polarized dendritic cells as cancer vaccines: Directing effector-type T cells to tumors. Seminars in Immunology, 2010, 22, 173-182.	5.6	62
53	Preferential Expression of Very Late Antigen-4 on Type 1 CTL Cells Plays a Critical Role in Trafficking into Central Nervous System Tumors. Cancer Research, 2007, 67, 6451-6458.	0.9	60
54	Identification of Interleukin-13 Receptor α2 Peptide Analogues Capable of Inducing Improved Antiglioma CTL Responses. Cancer Research, 2006, 66, 5883-5891.	0.9	59

#	Article	IF	CITATIONS
55	Unique challenges for glioblastoma immunotherapy—discussions across neuro-oncology and non-neuro-oncology experts in cancer immunology. Meeting Report from the 2019 SNO Immuno-Oncology Think Tank. Neuro-Oncology, 2021, 23, 356-375.	1.2	59
56	Glioma-associated hyaluronan induces apoptosis in dendritic cells via inducible nitric oxide synthase: implications for the use of dendritic cells for therapy of gliomas. Cancer Research, 2002, 62, 2583-91.	0.9	58
57	Peptide-pulsed dendritic cell vaccination targeting interleukin-13 receptor α2 chain in recurrent malignant glioma patients with HLA-A*24/A*02 allele. Cytotherapy, 2012, 14, 733-742.	0.7	56
58	Myeloid-derived Suppressor Cells (MDSCs) in Gliomas and Glioma-Development. Immunological Investigations, 2012, 41, 658-679.	2.0	56
59	Delivery of Dendritic Cells Engineered to Secrete IFN-α into Central Nervous System Tumors Enhances the Efficacy of Peripheral Tumor Cell Vaccines: Dependence on Apoptotic Pathways. Journal of Immunology, 2005, 175, 2730-2740.	0.8	54
60	Cytokine gene therapy for malignant glioma. Expert Opinion on Biological Therapy, 2004, 4, 1609-1620.	3.1	53
61	Expression of antigen processing and presenting molecules in brain metastasis of breast cancer. Cancer Immunology, Immunotherapy, 2012, 61, 789-801.	4.2	53
62	Antigen-specific immunoreactivity and clinical outcome following vaccination with glioma-associated antigen peptides in children with recurrent high-grade gliomas: results of a pilot study. Journal of Neuro-Oncology, 2016, 130, 517-527.	2.9	49
63	Genetically Engineered T-Cells for Malignant Clioma: Overcoming the Barriers to Effective Immunotherapy. Frontiers in Immunology, 2018, 9, 3062.	4.8	49
64	Zika virus oncolytic activity requires CD8+ T cells and is boosted by immune checkpoint blockade. JCI Insight, 2021, 6, .	5.0	46
65	Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. Molecular and Cellular Proteomics, 2019, 18, 1255-1268.	3.8	45
66	Vaccines Targeting Tumor Blood Vessel Antigens Promote CD8+ T Cell-Dependent Tumor Eradication or Dormancy in HLA-A2 Transgenic Mice. Journal of Immunology, 2012, 188, 1782-1788.	0.8	44
67	Antigenic expression and spontaneous immune responses support the use of a selected peptide set from the IMA950 glioblastoma vaccine for immunotherapy of grade II and III glioma. Oncolmmunology, 2018, 7, e1391972.	4.6	42
68	Deep immune profiling reveals targetable mechanisms of immune evasion in immune checkpoint inhibitor-refractory glioblastoma. , 2021, 9, e002181.		42
69	Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. Molecular and Cellular Proteomics, 2018, 17, 2132-2145.	3.8	41
70	Delivery of Interferon-α Transfected Dendritic Cells into Central Nervous System Tumors Enhances the Antitumor Efficacy of Peripheral Peptide-Based Vaccines. Cancer Research, 2004, 64, 5830-5838.	0.9	40
71	Cell penetrating peptide functionalized perfluorocarbon nanoemulsions for targeted cell labeling and enhanced fluorineâ€19 MRI detection. Magnetic Resonance in Medicine, 2020, 83, 974-987.	3.0	40
72	Cellular immunotherapy for malignant gliomas. Expert Opinion on Biological Therapy, 2016, 16, 1265-1275.	3.1	37

#	Article	IF	CITATIONS
73	IL-4-Transfected Tumor Cell Vaccines Activate Tumor-Infiltrating Dendritic Cells and Promote Type-1 Immunity. Journal of Immunology, 2005, 174, 7194-7201.	0.8	34
74	Brain Tumor Immunotherapy with Typeâ€1 Polarizing Strategies. Annals of the New York Academy of Sciences, 2009, 1174, 18-23.	3.8	34
75	Tumor antigens in glioma. Seminars in Immunology, 2020, 47, 101385.	5.6	34
76	The Characterization of Tumor Apoptosis after Experimental Radiosurgery. Stereotactic and Functional Neurosurgery, 2005, 83, 17-24.	1.5	33
77	Immune-Checkpoint Blockade and Active Immunotherapy for Glioma. Cancers, 2013, 5, 1379-1412.	3.7	33
78	T-Cell based therapies for overcoming neuroanatomical and immunosuppressive challenges within the glioma microenvironment. Journal of Neuro-Oncology, 2020, 147, 281-295.	2.9	32
79	Randomized trial of neoadjuvant vaccination with tumor-cell lysate induces T cell response in low-grade gliomas. Journal of Clinical Investigation, 2022, 132, .	8.2	32
80	Effective induction of antiglioma cytotoxic T cells by coadministration of interferon-Î ² gene vector and dendritic cells. Cancer Gene Therapy, 2003, 10, 549-558.	4.6	29
81	Fluorine-19 nuclear magnetic resonance of chimeric antigen receptor T cell biodistribution in murine cancer model. Scientific Reports, 2017, 7, 17748.	3.3	29
82	Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nature Communications, 2020, 11, 524.	12.8	29
83	Stat6 Signaling Suppresses VLA-4 Expression by CD8+ T Cells and Limits Their Ability to Infiltrate Tumor Lesions In Vivo. Journal of Immunology, 2008, 181, 104-108.	0.8	28
84	Dendritic cells in cancer immunotherapy: vaccines or autologous transplants?. Immunologic Research, 2011, 50, 235-247.	2.9	28
85	Principles of immunology and its nuances in the central nervous system: Fig. 1 Neuro-Oncology, 2015, 17, vii3-vii8.	1.2	28
86	Helper Function of Memory CD8+ T Cells: Heterologous CD8+ T Cells Support the Induction of Therapeutic Cancer Immunity. Cancer Research, 2007, 67, 10012-10018.	0.9	27
87	7-Hydroxystaurosporine-induced Apoptosis in 9L Glioma Cells Provides an Effective Antigen Source for Dendritic Cells and Yields a Potent Vaccine Strategy in an Intracranial Glioma Model. Neurosurgery, 2002, 50, 1327-1335.	1.1	26
88	Type17 T-cells in Central Nervous System Autoimmunity and Tumors. Journal of Clinical Immunology, 2012, 32, 802-808.	3.8	26
89	Transgene-derived overexpression of miR-17-92 in CD8+ T-cells confers enhanced cytotoxic activity. Biochemical and Biophysical Research Communications, 2015, 458, 549-554.	2.1	26
90	Current Advances in Immunotherapy for Glioblastoma. Current Oncology Reports, 2021, 23, 21.	4.0	26

#	Article	IF	CITATIONS
91	Exploitation of immune mechanisms in the treatment of central nervous system cancer. Seminars in Pediatric Neurology, 2000, 7, 131-143.	2.0	24
92	Detection of inflammatory cell function using 13C magnetic resonance spectroscopy of hyperpolarized [6-13C]-arginine. Scientific Reports, 2016, 6, 31397.	3.3	24
93	Expression of a soluble transforming growth factor-β (TGFβ) receptor reduces tumorigenicity by regulating natural killer (NK) cell activity against 9L gliosarcomain vivo. Journal of Neuro-Oncology, 2003, 64, 63-69.	2.9	23
94	The evolution of alternative splicing in glioblastoma under therapy. Genome Biology, 2021, 22, 48.	8.8	23
95	Gene Therapy and Biologic Therapy with Interleukin?4. Current Gene Therapy, 2002, 2, 437-450.	2.0	22
96	Do we need novel radiologic response criteria for brain tumor immunotherapy?. Expert Review of Neurotherapeutics, 2011, 11, 619-622.	2.8	22
97	Peptide vaccine immunotherapy biomarkers and response patterns in pediatric gliomas. JCI Insight, 2018, 3, .	5.0	21
98	The current landscape of immunotherapy for pediatric brain tumors. Nature Cancer, 2022, 3, 11-24.	13.2	21
99	The immunology of low-grade gliomas. Neurosurgical Focus, 2022, 52, E2.	2.3	20
100	Immunotherapy for High-Grade Gliomas: A Clinical Update and Practical Considerations for Neurosurgeons. World Neurosurgery, 2019, 124, 397-409.	1.3	19
101	Title is missing!. Journal of Neuro-Oncology, 2003, 64, 13-20.	2.9	16
102	Inhibition of D-2HG leads to upregulation of a proinflammatory gene signature in a novel HLA-A2/HLA-DR1 transgenic mouse model of IDH1R132H-expressing glioma. , 2022, 10, e004644.		14
103	Characterization and transduction of a retroviral vector encoding human interleukin-4 and herpes simplex virus-thymidine kinase for glioma tumor vaccine therapy. Cancer Gene Therapy, 2000, 7, 486-494.	4.6	13
104	The current state of immunotherapy for primary and secondary brain tumors: similarities and differences. Japanese Journal of Clinical Oncology, 2020, 50, 1231-1245.	1.3	13
105	Histamine deficiency promotes accumulation of immunosuppressive immature myeloid cells and growth of murine gliomas. Oncolmmunology, 2015, 4, e1047581.	4.6	12
106	Introduction to immunotherapy for brain tumor patients: challenges and future perspectives. Neuro-Oncology Practice, 2020, 7, 465-476.	1.6	10
107	Neuroimaging of Peptide-based Vaccine Therapy in Pediatric Brain Tumors. Neuroimaging Clinics of North America, 2017, 27, 155-166.	1.0	8
108	IFN-γ- and IL-17-producing CD8 ⁺ T (Tc17-1) cells in combination with poly-ICLC and peptide vaccine exhibit antiglioma activity. , 2021, 9, e002426.		8

#	Article	IF	CITATIONS
109	Assessing Oximetry Response to Chimeric Antigen Receptor T-cell Therapy against Glioma with 19F MRI in a Murine Model. Radiology Imaging Cancer, 2021, 3, e200062.	1.6	7
110	The future of cancer immunotherapy for brain tumors: a collaborative workshop. Journal of Translational Medicine, 2022, 20, .	4.4	7
111	Novel EGFRvIII-CAR transgenic mice for rigorous preclinical studies in syngeneic mice. Neuro-Oncology, 2022, 24, 259-272.	1.2	6
112	Treatment-induced lesions in newly diagnosed glioblastoma patients undergoing chemoradiotherapy and heat-shock protein vaccine therapy. Journal of Neuro-Oncology, 2020, 146, 71-78.	2.9	5
113	Considerations when treating high-grade pediatric glioma patients with immunotherapy. Expert Review of Neurotherapeutics, 2021, 21, 205-219.	2.8	5
114	The Great Debate at †Immunotherapy Bridge', Naples, December 5, 2019. , 2020, 8, e000921.		3
115	Is the immune response a friend or foe for viral therapy of glioma?. Neuro-Oncology, 2017, 19, 882-883.	1.2	2
116	RDNA-09. RADIATION PRIMES SB28 GLIOBLASTOMA FOR RESPONSE TO TGFÎ ² AND PD-L1 NEUTRALIZING ANTIBODIES. Neuro-Oncology, 2019, 21, vi208-vi208.	1.2	2
117	Immunotherapy Response Assessment in Neuro-Oncology (iRANO). , 2018, , 761-766.		1
118	IMMU-18. TARGETING H3.3 K27M MUTATION AS A SHARED NEOANTIGEN IN HLA-A*0201+ PATIENTS WITH DIFFUSE MIDLINE GLIOMAS – DEVELOPMENT OF A NOVEL MASS CYTOMETRY-BASED MONITORING OF VACCINE-REACTIVE, EPITOPE-SPECIFIC CD8+ T CELL RESPONSES. Neuro-Oncology, 2019, 21, ii96-ii96.	1.2	1
119	PDCT-17 (LTBK-11). PNOC007: H3.3K27M SPECIFIC PEPTIDE VACCINE COMBINED WITH POLY-ICLC FOR THE TREATMENT OF NEWLY DIAGNOSED HLA-A2+ H3.3K27M MIDLINE GLIOMAS. Neuro-Oncology, 2019, 21, vi284-vi285.	1.2	1
120	Biologic Therapy for Brain Cancers - Based on Cellular and Immunobiology. Yonsei Medical Journal, 2004, 45, S68.	2.2	0
121	IMMU-52. SELECTION OF GLIOMA T-CELL THERAPY TARGETS BASED ON THE ANALYSIS OF TUMOR IMMUNOPEPTIDOME AND EXPRESSION PROFILES. Neuro-Oncology, 2017, 19, vi124-vi124.	1.2	0
122	ATIM-11. PILOT STUDY OF TUMOR LYSATE VACCINE AND IMIQUIMOD IN ADULTS WITH WHO GRADE II GLIOMAS. Neuro-Oncology, 2017, 19, vi28-vi28.	1.2	0
123	IMMU-42. ONO-AE3-208 PROMOTES ANTI-TUMOR IMMUNE ACTIVITY AND SURVIVAL IN GLIOMA MODELS. Neuro-Oncology, 2017, 19, vi122-vi122.	1.2	0
124	IMMU-57. SEQUENTIAL TWO-RECEPTOR PRIMING CAR SYSTEM TO OVERCOME HETEROGENEOUS ANTIGEN EXPRESSION. Neuro-Oncology, 2018, 20, vi134-vi134.	1.2	0
125	IMMU-11. SPATIOTEMPORAL IMMUNOGENOMIC ANALYSIS OF THE T-CELL REPERTOIRE IN IDH-MUTANT LOWER GRADE GLIOMAS. Neuro-Oncology, 2019, 21, vi121-vi121.	1.2	0
126	IMMU-38. CRISPR BASED GENOME EDITING OF HUMAN T CELLS TO TARGET H3.3K27M MUTATION IN GLIOMAS. Neuro-Oncology, 2019, 21, vi127-vi127.	1.2	0

#	Article	IF	CITATIONS
127	IMMU-45. CAR-T TREATMENT OF NOVEL MOUSE MODEL OF EGFRVIII+ GBM MIRRORS CLINICAL TRIAL OUTCOMES AND PROVIDES A SYNGENEIC PLATFORM FOR THE INVESTIGATION OF CAR-T MECHANISMS OF ACTION. Neuro-Oncology, 2019, 21, vi128-vi129.	1.2	0
128	IMMU-21. SEQUENTIAL TWO-RECEPTOR PRIMING CAR SYSTEM TO OVERCOME HETEROGENEOUS ANTIGEN EXPRESSION. Neuro-Oncology, 2019, 21, vi123-vi123.	1.2	0
129	IMMU-30. UTILIZING A NOVEL MASS CYTOMETRY-BASED IMMUNOMONITORING PLATFORM FOR THE CHARACTERIZATION OF VACCINE-REACTIVE, EPITOPE-SPECIFIC CD8+ T-CELLS IN HLA-A*0201+ PATIENTS WITH K27M+ DIFFUSE MIDLINE GLIOMAS. Neuro-Oncology, 2019, 21, vi125-vi125.	1.2	Ο
130	Immunomodulatory roles of myeloid cells in gliomas. , 2022, , 109-125.		0
131	THER-05. GENETICALLY STABLE POLIOVIRUS VECTOR CARRYING H3.3K27M ANTIGEN FOR TREATMENT OF DIFFUSE MIDLINE GLIOMA BY INTRAMUSCULAR INJECTION. Neuro-Oncology, 2020, 22, iii472-iii472.	1.2	Ο
132	IMMU-14. SynNotch chimeric antigen receptor (CAR) T-cells as a potential treatment for diffuse intrinsic pontine glioma (DIPG)/diffuse midline glioma (DMG). Neuro-Oncology, 2022, 24, i84-i84.	1.2	0