
Douglas S Reed

List of Publications by Year in descending order

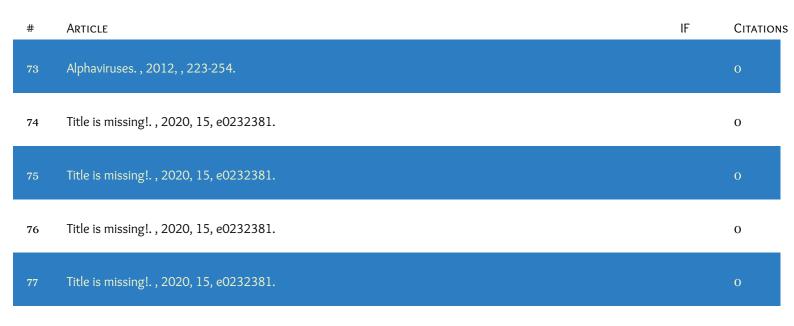
Source: https://exaly.com/author-pdf/7217692/publications.pdf Version: 2024-02-01

DOLICIAS S REED

#	Article	IF	CITATIONS
1	Animal models for COVID-19. Nature, 2020, 586, 509-515.	27.8	705
2	Pathogenesis of Ebola Hemorrhagic Fever in Cynomolgus Macaques. American Journal of Pathology, 2003, 163, 2347-2370.	3.8	543
3	Vesicular stomatitis virus-based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses. Vaccine, 2008, 26, 6894-6900.	3.8	179
4	Depletion of Peripheral Blood T Lymphocytes and NK Cells During the Course of Ebola Hemorrhagic Fever in Cynomolgus Macaques. Viral Immunology, 2004, 17, 390-400.	1.3	151
5	SARS-CoV-2 growth, furin-cleavage-site adaptation and neutralization using serum from acutely infected hospitalized COVID-19 patients. Journal of General Virology, 2020, 101, 1156-1169.	2.9	131
6	Inhalable Nanobody (PiN-21) prevents and treats SARS-CoV-2 infections in Syrian hamsters at ultra-low doses. Science Advances, 2021, 7, .	10.3	113
7	Generation of mucosal cytotoxic T cells against soluble protein by tissue-specific environmental and costimulatory signals. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 10814-10819.	7.1	112
8	SARS-CoV-2 infection of African green monkeys results in mild respiratory disease discernible by PET/CT imaging and shedding of infectious virus from both respiratory and gastrointestinal tracts. PLoS Pathogens, 2020, 16, e1008903.	4.7	110
9	Aerosol Exposure to Western Equine Encephalitis Virus Causes Fever and Encephalitis in Cynomolgus Macaques. Journal of Infectious Diseases, 2005, 192, 1173-1182.	4.0	85
10	Aerosol exposure to Zaire ebolavirus in three nonhuman primate species: differences in disease course and clinical pathology. Microbes and Infection, 2011, 13, 930-936.	1.9	84
11	The temporal program of peripheral blood gene expression in the response of nonhuman primates to Ebola hemorrhagic fever. Genome Biology, 2007, 8, R174.	9.6	80
12	Aerosol Exposure to the Angola Strain of Marburg Virus Causes Lethal Viral Hemorrhagic Fever in Cynomolgus Macaques. Veterinary Pathology, 2010, 47, 831-851.	1.7	78
13	Marburg and Ebola Viruses as Aerosol Threats. Biosecurity and Bioterrorism, 2004, 2, 186-191.	1.2	76
14	Genetically engineered, live, attenuated vaccines protect nonhuman primates against aerosol challenge with a virulent IE strain of Venezuelan equine encephalitis virus. Vaccine, 2005, 23, 3139-3147.	3.8	73
15	Broad Spectrum Antiviral Activity of Favipiravir (T-705): Protection from Highly Lethal Inhalational Rift Valley Fever. PLoS Neglected Tropical Diseases, 2014, 8, e2790.	3.0	71
16	Aerosolized Rift Valley Fever Virus Causes Fatal Encephalitis in African Green Monkeys and Common Marmosets. Journal of Virology, 2014, 88, 2235-2245.	3.4	66
17	Aerosol Infection of Cynomolgus Macaques with Enzootic Strains of Venezuelan Equine Encephalitis Viruses. Journal of Infectious Diseases, 2004, 189, 1013-1017.	4.0	62
18	Advances and gaps in SARS-CoV-2 infection models. PLoS Pathogens, 2022, 18, e1010161.	4.7	61

DOUGLAS S REED

#	Article	IF	CITATIONS
19	Severe Encephalitis in Cynomolgus Macaques Exposed to Aerosolized Eastern Equine Encephalitis Virus. Journal of Infectious Diseases, 2007, 196, 441-450.	4.0	60
20	Combined Alphavirus Replicon Particle Vaccine Induces Durable and Cross-Protective Immune Responses against Equine Encephalitis Viruses. Journal of Virology, 2014, 88, 12077-12086.	3.4	49
21	Status and challenges of filovirus vaccines. Vaccine, 2007, 25, 1923-1934.	3.8	47
22	Protective antibodies against Eastern equine encephalitis virus bind to epitopes in domains A and B of the E2 glycoprotein. Nature Microbiology, 2019, 4, 187-197.	13.3	45
23	Cellular Immune Response to Marburg Virus Infection in Cynomolgus Macaques. Viral Immunology, 2008, 21, 355-364.	1.3	43
24	Immunogenicity and protective efficacy of a DNA vaccine against Venezuelan equine encephalitis virus aerosol challenge in nonhuman primates. Vaccine, 2010, 28, 7345-7350.	3.8	43
25	Pathogenesis of aerosolized Eastern Equine Encephalitis virus infection in guinea pigs. Virology Journal, 2009, 6, 170.	3.4	41
26	Choice of inbred rat strain impacts lethality and disease course after respiratory infection with Rift Valley Fever Virus. Frontiers in Cellular and Infection Microbiology, 2012, 2, 105.	3.9	40
27	Widespread Virus Replication in Alveoli Drives Acute Respiratory Distress Syndrome in Aerosolized H5N1 Influenza Infection of Macaques. Journal of Immunology, 2017, 198, 1616-1626.	0.8	40
28	Identification of a Surrogate Marker for Infection in the African Green Monkey Model of Inhalation Anthrax. Infection and Immunity, 2008, 76, 5790-5801.	2.2	36
29	Ribbon scanning confocal for high-speed high-resolution volume imaging of brain. PLoS ONE, 2017, 12, e0180486.	2.5	33
30	Andes Virus Infection of Cynomolgus Macaques. Journal of Infectious Diseases, 2002, 186, 1706-1712.	4.0	32
31	Aerobiology and Inhalation Exposure to Biological Select Agents and Toxins. Veterinary Pathology, 2010, 47, 779-789.	1.7	32
32	Live Attenuated Mutants of Francisella tularensis Protect Rabbits against Aerosol Challenge with a Virulent Type A Strain. Infection and Immunity, 2014, 82, 2098-2105.	2.2	32
33	Antibody Preparations from Human Transchromosomic Cows Exhibit Prophylactic and Therapeutic Efficacy against Venezuelan Equine Encephalitis Virus. Journal of Virology, 2017, 91, .	3.4	32
34	Differential Growth of Francisella tularensis, Which Alters Expression of Virulence Factors, Dominant Antigens, and Surface-Carbohydrate Synthases, Governs the Apparent Virulence of Ft SchuS4 to Immunized Animals. Frontiers in Microbiology, 2017, 8, 1158.	3.5	32
35	Growth conditions and environmental factors impact aerosolization but not virulence of Francisella tularensis infection in mice. Frontiers in Cellular and Infection Microbiology, 2012, 2, 126.	3.9	31
36	Peripheral Blood Biomarkers of Disease Outcome in a Monkey Model of Rift Valley Fever Encephalitis. Journal of Virology, 2018, 92, .	3.4	30


DOUGLAS S REED

#	Article	IF	CITATIONS
37	A Vibrating Mesh Nebulizer as an Alternative to the Collison Three-Jet Nebulizer for Infectious Disease Aerobiology. Applied and Environmental Microbiology, 2019, 85, .	3.1	29
38	Pneumonic Tularemia in Rabbits Resembles the Human Disease as Illustrated by Radiographic and Hematological Changes after Infection. PLoS ONE, 2011, 6, e24654.	2.5	25
39	Infiltration of inflammatory macrophages and neutrophils and widespread pyroptosis in lung drive influenza lethality in nonhuman primates. PLoS Pathogens, 2022, 18, e1010395.	4.7	23
40	Neutrophil and macrophage influx into the central nervous system are inflammatory components of lethal Rift Valley fever encephalitis in rats. PLoS Pathogens, 2019, 15, e1007833.	4.7	22
41	Novel engineered cationic antimicrobial peptides display broad-spectrum activity against Francisella tularensis, Yersinia pestis and Burkholderia pseudomallei. Journal of Medical Microbiology, 2016, 65, 188-194.	1.8	22
42	Rational design of a live-attenuated eastern equine encephalitis virus vaccine through informed mutation of virulence determinants. PLoS Pathogens, 2019, 15, e1007584.	4.7	21
43	Gene expression profiling of nonhuman primates exposed to aerosolized Venezuelan equine encephalitis virus. FEMS Immunology and Medical Microbiology, 2007, 51, 462-472.	2.7	20
44	Nonhuman primate models of encephalitic alphavirus infection: historical review and future perspectives. Current Opinion in Virology, 2012, 2, 363-367.	5.4	19
45	Respiratory immunity is an important component of protection elicited by subunit vaccination against pneumonic plague. Vaccine, 2006, 24, 2283-2289.	3.8	17
46	Telemetric analysis to detect febrile responses in mice following vaccination with a live-attenuated virus vaccine. Vaccine, 2009, 27, 6814-6823.	3.8	17
47	Inflammatory Biomarkers Associated with Lethal Rift Valley Fever Encephalitis in the Lewis Rat Model. Frontiers in Microbiology, 2015, 6, 1509.	3.5	17
48	Differences in aerosolization of Rift Valley fever virus resulting from choice of inhalation exposure chamber: implications for animal challenge studies. Pathogens and Disease, 2014, 71, 227-233.	2.0	15
49	Respiratory and oral vaccination improves protection conferred by the live vaccine strain against pneumonic tularemia in the rabbit model. Pathogens and Disease, 2016, 74, ftw079.	2.0	15
50	Applications of minimally invasive multimodal telemetry for continuous monitoring of brain function and intracranial pressure in macaques with acute viral encephalitis. PLoS ONE, 2020, 15, e0232381.	2.5	14
51	Very Low Doses of Mycobacterium tuberculosis Yield Diverse Host Outcomes in Common Marmosets (Callithrix jacchus). Comparative Medicine, 2016, 66, 412-419.	1.0	14
52	Mapping of antibody responses to the protective antigen ofBacillus anthracis by flow cytometric analysis. Cytometry, 2002, 49, 1-7.	1.8	13
53	Vascular permeability in the brain is a late pathogenic event during Rift Valley fever virus encephalitis in rats. Virology, 2019, 526, 173-179.	2.4	13
54	Infectious disease aerobiology: miasma incarnate. Frontiers in Cellular and Infection Microbiology, 2012. 2. 163.	3.9	12

4

Douglas S Reed

#	Article	IF	CITATIONS
55	Physiological and immunological changes in the brain associated with lethal eastern equine encephalitis virus in macaques. PLoS Pathogens, 2021, 17, e1009308.	4.7	11
56	Rapid discovery and optimization of therapeutic antibodies against emerging infectious diseases. Protein Engineering, Design and Selection, 2008, 21, 495-505.	2.1	10
57	In vivoimaging in an ABSL-3 regional biocontainment laboratory. Pathogens and Disease, 2014, 71, 207-212.	2.0	10
58	The Role and Mechanism of Erythrocyte Invasion by Francisella tularensis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 173.	3.9	10
59	Aerosol prime-boost vaccination provides strong protection in outbred rabbits against virulent type A Francisella tularensis. PLoS ONE, 2018, 13, e0205928.	2.5	10
60	Development of Rift valley fever encephalitis in rats is mediated by early infection of olfactory epithelium and neuroinvasion across the cribriform plate. Journal of General Virology, 2021, 102, .	2.9	10
61	Electrocardiography Abnormalities in Macaques after Infection with Encephalitic Alphaviruses. Pathogens, 2019, 8, 240.	2.8	9
62	A comparison of body temperature changes due to the administration of ketamine-acepromazine and tiletamine-zolazepam anesthetics in cynomolgus macaques. Contemporary Topics in Laboratory Animal Science, 2002, 41, 47-50.	0.2	9
63	Development, Characterization, and Standardization of a Nose-Only Inhalation Exposure System for Exposure of Rabbits to Small-Particle Aerosols Containing Francisella tularensis. Infection and Immunity, 2019, 87, .	2.2	7
64	Neutralizing antibodies protect mice against Venezuelan equine encephalitis virus aerosol challenge. Journal of Experimental Medicine, 2022, 219, .	8.5	7
65	Glycosyltransferase regulation mediated by pre-TCR signaling in early thymocyte development. International Immunology, 1998, 10, 445-451.	4.0	6
66	Development of novel mechanisms for housing, handling, and remote monitoring of common marmosets at animal biosafety level 3. Pathogens and Disease, 2014, 71, 219-226.	2.0	6
67	The O-Ag Antibody Response to Francisella Is Distinct in Rodents and Higher Animals and Can Serve as a Correlate of Protection. Pathogens, 2021, 10, 1646.	2.8	5
68	The Natural History of Aerosolized Francisella tularensis Infection in Cynomolgus Macaques. Pathogens, 2021, 10, 597.	2.8	4
69	Long-term persistence of viral RNA and inflammation in the CNS of macaques exposed to aerosolized Venezuelan equine encephalitis virus. PLoS Pathogens, 2022, 18, e1009946.	4.7	4
70	CHAPTER 13. Aerosol Exposure to Pathogenic Bacteria and Virus Particles: Standard Operating Procedure. Issues in Toxicology, 0, , 445-459.	0.1	3
71	Alphaviruses. , 2005, , 181-206.		3
72	Identification of an Attenuated Substrain of Francisella tularensis SCHU S4 by Phenotypic and Genotypic Analyses. Pathogens, 2021, 10, 638.	2.8	2

