
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7217669/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Wading through the void: Exploring quantum friction and nonequilibrium fluctuations. APL Photonics, 2022, 7, .	3.0	18
2	Quantum-inspired multicore optical fiber. Optics Letters, 2022, 47, 2526-2529.	1.7	0
3	Nanostructured In ₃ SbTe ₂ antennas enable switching from sharp dielectric to broad plasmonic resonances. Nanophotonics, 2022, 11, 3871-3882.	2.9	14
4	Linear response theory of open systems with exceptional points. Nature Communications, 2022, 13, .	5.8	13
5	Branching Highâ€Order Exceptional Points in Nonâ€Hermitian Optical Systems. Laser and Photonics Reviews, 2022, 16, .	4.4	2
6	Topological protection versus degree of entanglement of two-photon edge states. , 2021, , .		0
7	Splitting exceptional points by photon-number resolved detection of multi-mode coherent states. , 2021, , .		0
8	Defectâ€ S tate Lasing in Photonic Lattices of Metal–Organic Microcavities. Advanced Photonics Research, 2021, 2, 2000116.	1.7	0
9	Enhanced Faraday rotation by dielectric metasurfaces with Bayesian shape-optimized scatterers. Optics Letters, 2021, 46, 1720.	1.7	8
10	Topological protection versus degree of entanglement of two-photon light in photonic topological insulators. Nature Communications, 2021, 12, 1974.	5.8	19
11	Electron energy loss spectroscopy on freestanding perforated gold films. Physical Review B, 2021, 103,	1.1	1
12	Despite the ongoing pandemic, OSA staff, topical editors, and reviewers maintain JOSA B's high standards: editorial. Journal of the Optical Society of America B: Optical Physics, 2021, 38, ED1.	0.9	0
13	Topological protection versus degree of entanglement of two-photon light. , 2021, , .		0
14	Direct observation of the particle exchange phase of photons. Nature Photonics, 2021, 15, 671-675.	15.6	10
15	Tailored Disorder in Photonics: Learning from Nature. Advanced Optical Materials, 2021, 9, 2100787.	3.6	37
16	Topological protection of highly entangled non-Gaussian two-photon states. Materials for Quantum Technology, 2021, 1, 035001.	1.2	1
17	Additive splitting methods for parallel solutions of evolution problems. Journal of Computational Physics, 2021, 436, 110320.	1.9	1
18	Entangled two-photon absorption spectroscopy with varying pump wavelengths. Journal of the Optical Society of America B: Optical Physics, 2021, 38, C63.	0.9	7

#	Article	IF	CITATIONS
19	Modeling electromagnetic resonators using quasinormal modes: Erratum. Advances in Optics and Photonics, 2021, 13, 834.	12.1	2
20	Entanglement protection of non-gaussian two-photon states in photonic topological insulators. , 2021, , .		0
21	Nonequilibrium thermodynamics of quantum friction. Physical Review A, 2020, 102, .	1.0	23
22	Nonadditive Enhancement of Nonequilibrium Atom-Surface Interactions. Physical Review Letters, 2020, 124, 193603.	2.9	10
23	Broadband Spectrometer with Single-Photon Sensitivity Exploiting Tailored Disorder. Nano Letters, 2020, 20, 2625-2631.	4.5	30
24	On the applicability of quantum-optical concepts in strong-coupling nanophotonics. Reports on Progress in Physics, 2020, 83, 082401.	8.1	51
25	Quantum thermodynamics of overdamped modes in local and spatially dispersive materials. Physical Review A, 2020, 101, .	1.0	9
26	Waveguideâ€Integrated Broadband Spectrometer Based on Tailored Disorder. Advanced Optical Materials, 2020, 8, 1901602.	3.6	46
27	Topological protection in non-Hermitian Haldane honeycomb lattices. Physical Review Research, 2020, 2, .	1.3	13
28	Modeling electromagnetic resonators using quasinormal modes. Advances in Optics and Photonics, 2020, 12, 612.	12.1	76
29	Negative asymmetry parameter in plasmonic core-shell nanoparticles. Optics Express, 2020, 28, 1714.	1.7	3
30	Importance of substrates for the visibility of "dark" plasmonic modes. Optics Express, 2020, 28, 13938.	1.7	8
31	Dispersion control in a near-infrared subwavelength resonator with a tailored hyperbolic metamaterial. Optics Letters, 2020, 45, 3665.	1.7	2
32	Multiphoton synthetic lattices in multiport waveguide arrays: synthetic atoms and Fock graphs. Photonics Research, 2020, 8, 1161.	3.4	13
33	Tutorials as a novel service for the optics and photonics community: editorial. Journal of the Optical Society of America B: Optical Physics, 2020, 37, ED7.	0.9	0
34	Maintaining the breadth and depth —a tribute to the volunteers of JOSA B: editorial. Journal of the Optical Society of America B: Optical Physics, 2020, 37, ED1.	0.9	0
35	Topological Edge States in Parity-Time-Broken Haldane Honeycomb Lattices. , 2020, , .		0
36	. Broadband fiber-to-chip coupling in different wavelength regimes realized by 3D-structures. , 2020, ,		2

#	Article	IF	CITATIONS
37	Are photons bosons? Measuring the particle exchange phase of photons. , 2020, , .		Ο
38	Composition analysis and transition energies of ultrathin Sn-rich GeSn quantum wells. Physical Review Materials, 2020, 4, .	0.9	10
39	Assistant Topical Editors return to JOSA B: editorial. Journal of the Optical Society of America B: Optical Physics, 2020, 37, ED8.	0.9	3
40	Quantum Rolling Friction. Physical Review Letters, 2019, 123, 120401.	2.9	22
41	Multiphoton quantum-state engineering using conditional measurements. Npj Quantum Information, 2019, 5, .	2.8	57
42	Low-loss fiber-to-chip couplers with ultrawide optical bandwidth. APL Photonics, 2019, 4, .	3.0	58
43	Quantization of Quasinormal Modes for Open Cavities and Plasmonic Cavity Quantum Electrodynamics. Physical Review Letters, 2019, 122, 213901.	2.9	130
44	Two-particle quantum correlations in stochastically-coupled networks. New Journal of Physics, 2019, 21, 053041.	1.2	2
45	Mode-independent quantum entanglement for light. Physical Review A, 2019, 100, .	1.0	13
46	Polaritonic contribution to the Casimir energy between two graphene layers. Physical Review B, 2019, 100, .	1.1	4
47	Extended hydrodynamic description for nonequilibrium atom-surface interactions. Journal of the Optical Society of America B: Optical Physics, 2019, 36, C52.	0.9	12
48	Exceptional points of any order in a single, lossy waveguide beam splitter by photon-number-resolved detection. Photonics Research, 2019, 7, 862.	3.4	47
49	A privilege and a responsibility: editorial. Journal of the Optical Society of America B: Optical Physics, 2019, 36, ED1.	0.9	0
50	Pseudo energy representation of multi-photon states in photonic tight-binding lattices. , 2019, , .		0
51	Fluctuation-induced phenomena in photonic systems: introduction. Journal of the Optical Society of America B: Optical Physics, 2019, 36, FIP1.	0.9	1
52	Plasmonic modes in nanowire dimers: A study based on the hydrodynamic Drude model including nonlocal and nonlinear effects. Physical Review B, 2018, 97, .	1.1	29
53	Two-particle four-point correlations in dynamically disordered tight-binding networks. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 024002.	0.6	5
54	Fluorescence enhancement by a dark plasmon mode. Applied Physics B: Lasers and Optics, 2018, 124, 1.	1.1	3

#	Article	IF	CITATIONS
55	Modal expansions in periodic photonic systems with material loss and dispersion. Physical Review B, 2018, 97, .	1.1	14
56	A slab waveguide source for discontinuous Galerkin time-domain methods. , 2018, , .		0
57	Mie excitons: Understanding strong coupling in dielectric nanoparticles. Physical Review B, 2018, 98, .	1.1	40
58	Endurance of quantum coherence due to particle indistinguishability in noisy quantum networks. Npj Quantum Information, 2018, 4, .	2.8	35
59	Multiphoton discrete fractional Fourier dynamics in waveguide beam splitters. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1985.	0.9	15
60	Anomalous resonances of an optical microcavity with a hyperbolic metamaterial core. Physical Review B, 2018, 97, .	1.1	4
61	Nonequilibrium atom-surface interaction with lossy multilayer structures. Physical Review A, 2018, 97,	1.0	12
62	Design study of random spectrometers for applications at optical frequencies. Optics Letters, 2018, 43, 3180.	1.7	13
63	Highly Compact and Scalable Waveguide-Integrated Single Photon Spectrometer Based on Tailored Disorder. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 405-405.	0.2	0
64	Multiphoton Hong-Ou-Mandel Interferometry with Entangled Photon-Subtracted States. , 2018, , .		1
65	Waveguide-integrated single photon spectrometer based on tailored disorder (Conference) Tj ETQq1 1 0.7843	14 rgBT /O	verlock 10 Tf
66	Quantum coherences of indistinguishable particles. Physical Review A, 2017, 96, .	1.0	12
67	Spatial dispersion in atom-surface quantum friction. Physical Review B, 2017, 95, .	1.1	24
68	Dynamical Casimir effect in stochastic systems: Photon harvesting through noise. Physical Review A, 2017, 96, .	1.0	17
69	Device performance tuning of Ge gate-all-around tunneling field effect transistors by means of GeSn: Potential and challenges. , 2017, , .		2
70	Limitations of Particle-Based Spasers. Physical Review Letters, 2017, 118, 237402.	2.9	29
71	Discontinuous-Galerkin methods for the accurate modelling of photonic systems. , 2017, , .		0
72	Hyperbolic cavitities as tunable platform for spontaneous emission enhancement of dye molecules. , 2017, , .		0

#	Article	IF	CITATIONS
73	A 3D discontinuous Galerkin Time-Domain method for nano plasmonics with a nonlocal dispersion model. , 2017, , .		2
74	Near-field study on the transition from localized to propagating plasmons on 2D nano-triangles. Optics Express, 2017, 25, 16947.	1.7	7
75	Mid-infrared beam splitter for ultrashort pulses. Optics Letters, 2017, 42, 2918.	1.7	3
76	Light-matter interaction in planar plasmonic and metamaterial systems: equilibrium and non-equilibrium effects (Conference Presentation). , 2017, , .		0
77	Photoluminescence from ultrathin Ge-rich multiple quantum wells observed up to room temperature: Experiments and modeling. Physical Review B, 2016, 94, .	1.1	8
78	Compositional dependence of the band-gap of Ge1â^' <i>x</i> â^' <i>y</i> Si <i>x</i> Sn <i>y</i> alloys. Applied Physics Letters, 2016, 108, .	1.5	27
79	Coupling of Surface-Plasmon-Polariton-Hybridized Cavity Modes between Submicron Slits in a Thin Gold Film. ACS Photonics, 2016, 3, 836-843.	3.2	14
80	Ultrafast three-wave-mixing in plasmonic nanostructures. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	6
81	Discontinuous Galerkin methods in nano-photonics. , 2016, , .		0
82	Failure of Local Thermal Equilibrium in Quantum Friction. Physical Review Letters, 2016, 117, 100402.	2.9	32
83	Green's-function formalism for waveguide QED applications. Physical Review A, 2016, 93, .	1.0	30
84	Determining graphene's induced band gap with magnetic and electric emitters. Physical Review B, 2016, 93, .	1.1	5
85	Structure-induced resonant tail-state regime absorption in polymer: fullerene bulk-heterojunction solar cells. Physical Review B, 2016, 93, .	1.1	2
86	Surface-plasmon-polariton hybridized cavity modes in submicrometer slits in a thin Au film. Physical Review B, 2016, 93, .	1.1	1
87	Non-Markovianity in atom-surface dispersion forces. Physical Review A, 2016, 94, .	1.0	28
88	Failure of local thermal equilibrium in quantum friction. , 2016, , .		0
89	TE resonances in graphene-dielectric structures. Journal of Optics (United Kingdom), 2016, 18, 034001.	1.0	6
90	Second Harmonic Generation from Metal Nano-Particle Resonators: Numerical Analysis On the Basis of the Hydrodynamic Drude Model. Journal of Physical Chemistry C, 2016, 120, 1163-1169.	1.5	33

#	Article	IF	CITATIONS
91	Fluorescence in nonlocal dissipative periodic structures. Physical Review A, 2015, 91, .	1.0	23
92	Real-space imaging of nanotip plasmons using electron energy loss spectroscopy. Physical Review B, 2015, 92, .	1.1	40
93	Real space imaging of nano-tip plasmons using electron energy-loss spectroscopy. , 2015, , .		0
94	Efficient multiple time-stepping algorithms of higher order. Journal of Computational Physics, 2015, 285, 133-148.	1.9	15
95	Current sheets in the Discontinuous Galerkin Time-Domain method: an application to graphene. , 2015, ,		5
96	Growth and characterization of SiGeSn quantum well photodiodes. Optics Express, 2015, 23, 25048.	1.7	40
97	Transformation of light polarization in thin-film opal photonic crystals. Proceedings of SPIE, 2014, , .	0.8	0
98	Interslit Coupling via Ultrafast Dynamics across Gold-Film Hole Arrays. Journal of Physical Chemistry C, 2014, 118, 11043-11049.	1.5	4
99	Scanning Single Quantum Emitter Fluorescence Lifetime Imaging: Quantitative Analysis of the Local Density of Photonic States. Nano Letters, 2014, 14, 2623-2627.	4.5	74
100	Disordered photonic crystals: a cluster coherent potential approach using photonic Wannier functions. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 2246.	0.9	2
101	Frequencyâ€Resolved Reciprocalâ€5pace Mapping of Visible Spontaneous Emission from 3D Photonic Crystals. Advanced Optical Materials, 2014, 2, 849-853.	3.6	8
102	Titania Woodpiles with Complete Threeâ€Dimensional Photonic Bandgaps in the Visible. Advanced Materials, 2013, 25, 3588-3592.	11.1	60
103	Quantum Bocce: Magnon–magnon collisions between propagating and bound states in 1D spin chains. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1242-1249.	0.9	6
104	Strongly coupled slow-light polaritons in one-dimensional disordered localized states. Scientific Reports, 2013, 3, 1994.	1.6	22
105	Abandoned Functionality of Thinâ€Film Opal Photonic Crystals. Advanced Optical Materials, 2013, 1, 952-962.	3.6	8
106	Modeling Spontaneous Emission Control in Photonic Crystals by Ferromagnetic Resonance. IEEE Transactions on Magnetics, 2013, 49, 1013-1019.	1.2	0
107	From Isolated Metaatoms to Photonic Metamaterials: Evolution of the Plasmonic Near-Field. Nano Letters, 2013, 13, 703-708.	4.5	53
108	In Situ Observation of Plasmon Tuning in a Single Gold Nanoparticle during Controlled Melting. Nano Letters, 2013, 13, 2041-2046.	4.5	44

#	Article	IF	CITATIONS
109	Design and numerical optimization of an easy-to-fabricate photon-to-plasmon coupler for quantum plasmonics. Applied Physics Letters, 2013, 102, .	1.5	12
110	Spectra of coherent resonant light pulses interacting with a two-level atom in a waveguide. Physical Review A, 2013, 87, .	1.0	12
111	A low-cost AFM setup with an interferometer for undergraduates and secondary-school students. European Journal of Physics, 2013, 34, 901-914.	0.3	13
112	Generation of Wannier functions for photonic crystals. Physical Review B, 2013, 88, .	1.1	9
113	Comparison of electron energy-loss and quantitative optical spectroscopy on individual optical gold antennas. Nanophotonics, 2013, 2, 241-245.	2.9	14
114	Correlated photons in one-dimensional waveguides. Optics Letters, 2013, 38, 3693.	1.7	9
115	Simple magneto–optic transition metal models for time–domain simulations. Optics Express, 2013, 21, 12022.	1.7	13
116	B-spline modal method: A polynomial approach compared to the Fourier modal method. Optics Express, 2013, 21, 14683.	1.7	16
117	Quantitative spectroscopy on individual wire, slot, bow-tie, rectangular, and square-shaped optical antennas. Optics Letters, 2013, 38, 4597.	1.7	14
118	Photon transport in one-dimensional systems coupled to three-level quantum impurities. New Journal of Physics, 2013, 15, 083019.	1.2	23
119	Direct Transcription of Twoâ€Dimensional Colloidal Crystal Arrays into Threeâ€Dimensional Photonic Crystals. Advanced Functional Materials, 2013, 23, 1164-1171.	7.8	33
120	Non-Markovian Radiation Dynamics in Photonic Band Gap Materials. , 2013, , .		0
121	Photon transport in one-dimensional systems coupled to three-level quantum impurities. , 2012, , .		1
122	Radiation dynamics of a spin system in a photonic band gap material. , 2012, , .		0
123	The Hong-Ou-Mandel effect in the context of few-photon scattering. Optics Express, 2012, 20, 12326.	1.7	16
124	A construction guide to analytically generated meshes for the Fourier Modal Method. Optics Express, 2012, 20, 17319.	1.7	8
125	Pulse propagation of photon-added coherent states in waveguides with side-coupled nonlinear cavities. Optics Letters, 2012, 37, 1793.	1.7	0
126	Quantitative measurement of scattering and absorption cross-sections of individual metal nano-antennas. , 2012, , .		0

#	Article	IF	CITATIONS
127	Direct Observation of Non-Markovian Radiation Dynamics in 3D Bulk Photonic Crystals. Physical Review Letters, 2012, 108, 043603.	2.9	72
128	Cluster coherent potential approximation for disordered photonic crystals using photonic Wannier functions. Optics Letters, 2012, 37, 560.	1.7	5
129	Quantitative Experimental Determination of Scattering and Absorption Cross-Section Spectra of Individual Optical Metallic Nanoantennas. Physical Review Letters, 2012, 109, 233902.	2.9	64
130	A low-cost setup for microstructuring experiments using a homemade UV laser. American Journal of Physics, 2012, 80, 260-265.	0.3	0
131	Constraints in the generation of photonic Wannier functions. Physica B: Condensed Matter, 2012, 407, 4051-4055.	1.3	2
132	Efficient low-storage Runge–Kutta schemes with optimized stability regions. Journal of Computational Physics, 2012, 231, 364-372.	1.9	59
133	Discontinuous Galerkin Methods in Nanophotonics. , 2012, , .		1
134	The photonic Wannier function approach to photonic crystal simulations: status and perspectives. Journal of Modern Optics, 2011, 58, 365-383.	0.6	18
135	Stretched-coordinate PMLs for Maxwell's equations in the discontinuous Galerkin time-domain method. Optics Express, 2011, 19, 4618.	1.7	8
136	Analysis of light propagation in slotted resonator based systems via coupled-mode theory. Optics Express, 2011, 19, 8641.	1.7	10
137	Waveguides in three-dimensional photonic-bandgap materials by direct laser writing and silicon double inversion. Optics Letters, 2011, 36, 67.	1.7	41
138	Photonic-crystal time-domain simulations using Wannier functions. Optics Letters, 2011, 36, 307.	1.7	4
139	Spatio-spectral characterization of photonic meta-atoms with electron energy-loss spectroscopy [Invited]. Optical Materials Express, 2011, 1, 1009.	1.6	36
140	Computing electron energy loss spectra with the Discontinuous Galerkin Time-Domain method. Photonics and Nanostructures - Fundamentals and Applications, 2011, 9, 367-373.	1.0	36
141	TaCoNa-Photonics 2010. Photonics and Nanostructures - Fundamentals and Applications, 2011, 9, 295.	1.0	0
142	Discontinuous Galerkin methods in nanophotonics. Laser and Photonics Reviews, 2011, 5, 773-809.	4.4	137
143	Few-photon transport in low-dimensional systems. Physical Review A, 2011, 83, .	1.0	90
144	Distance-dependence of the coupling between split-ring resonators and single-quantum-well gain. Applied Physics Letters, 2011, 99, 111104.	1.5	27

#	Article	IF	CITATIONS
145	Polarization Change in Face–Centered Cubic Opal Films. AIP Conference Proceedings, 2011, , .	0.3	3
146	A B-Spline Modal Method in Comparison to the Fourier Modal Method. , 2011, , .		0
147	Simulations of nano-antennas with the discontinuous Galerkin time-domain method. Proceedings of SPIE, 2010, , .	0.8	0
148	Thermal emission from finite photonic crystals. Proceedings of SPIE, 2010, , .	0.8	0
149	Polarization anisotropy and cross-polarized transmission in thin film opal-based photonic crystals. Proceedings of SPIE, 2010, , .	0.8	1
150	Simulating Electron Energy Loss Spectra using the Discontinuous Galerkin Time Domain Method. , 2010, , .		1
151	Using Curved Elements in the Discontinuous Galerkin Time-Domain Approach. , 2010, , .		3
152	Comparison of Low-Storage Runge-Kutta Schemes for Discontinuous Galerkin Time-Domain Simulations of Maxwell's Equations. Journal of Computational and Theoretical Nanoscience, 2010, 7, 1572-1580.	0.4	30
153	Threeâ€Ðimensional Nanostructures for Photonics. Advanced Functional Materials, 2010, 20, 1038-1052.	7.8	309
154	Photonic Crystal Devices with Multiple Dyes by Consecutive Local Infiltration of Single Pores. Advanced Materials, 2010, 22, 4731-4735.	11.1	6
155	Electrochemical Modulation of Photonic Metamaterials. Advanced Materials, 2010, 22, 5173-5177.	11.1	28
156	The Discontinuous Galerkin Time-Domain method for Maxwell's equations with anisotropic materials. Photonics and Nanostructures - Fundamentals and Applications, 2010, 8, 303-309.	1.0	35
157	Suppression of the critical angle of diffraction in thin-film colloidal photonic crystals. Physical Review B, 2010, 82, .	1.1	19
158	Woodpile Photonic Crystals with a Complete Bandgap Reaching Telecom Wavelengths. , 2010, , .		0
159	Few-Photon Transport in Low-Dimensional Systems: Interaction-Induced Radiation Trapping. Physical Review Letters, 2010, 104, 023602.	2.9	189
160	Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation. Optics Express, 2010, 18, 6545.	1.7	77
161	Generation of adaptive coordinates and their use in the Fourier Modal Method. Optics Express, 2010, 18, 23258.	1.7	30
162	Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths. Optics Letters, 2010, 35, 1094.	1.7	80

#	Article	IF	CITATIONS
163	High-Q Polymeric Microcavities towards Biosensing Applications. , 2010, , .		Ο
164	Time-Domain Simulations of Semiclassical Radiation Dynamics in Photonic Nanostructures. , 2010, , .		0
165	Selfconsistent Theory for Random Lasers in Disordered 3d Media of Finite Size. , 2010, , .		0
166	Simulation of anisotropic nonlinear Ï \ddagger (2) material with FDTD. , 2010, , .		0
167	Additional Basis Functions for the Photonic Wannier Function Method. , 2009, , .		0
168	Time-Stepping and Convergence Characteristics of the Discontinuous Galerkin Time-Domain Approach for the Maxwell Equations. , 2009, , .		3
169	Electromagnetic Coupling Effects in Pairs of Split-Ring Resonators. , 2009, , .		0
170	TaCoNa-Photonics 2008. Journal of Optics, 2009, 11, 110201.	1.5	0
171	Dynamics of photon transport through quantum impurities in dispersion-engineered one-dimensional systems. Journal of Optics, 2009, 11, 114009.	1.5	33
172	Transition between corrugated metal films andÂsplit-ring-resonator arrays. Applied Physics B: Lasers and Optics, 2009, 96, 749-755.	1.1	12
173	Higher-order time-domain methods for the analysis of nano-photonic systems. Photonics and Nanostructures - Fundamentals and Applications, 2009, 7, 2-11.	1.0	59
174	Theoretical Approach to Random Lasing in thin Systems on reflecting Substrates. , 2009, , .		1
175	Properties of thermal radiation in photonic crystals. Journal of Optics, 2009, 11, 114005.	1.5	9
176	Second-harmonic generation from split-ring resonators on a GaAs substrate. Optics Letters, 2009, 34, 1997.	1.7	99
177	Discontinuous Galerkin time-domain computations of metallic nanostructures. Optics Express, 2009, 17, 14934.	1.7	50
178	Thermal emission from finite photonic crystals. Applied Physics Letters, 2009, 95, .	1.5	13
179	Time-Domain Simulations of the Nonlinear Maxwell Equations Using Operator-Exponential Methods. IEEE Transactions on Antennas and Propagation, 2009, 57, 475-483.	3.1	19
180	Simulation of optical resonators using DGTD and FDTD. Journal of Optics, 2009, 11, 114015.	1.5	35

#	Article	IF	CITATIONS
181	Analysis of metallic nanostructures via a discontinuous-Galerkin time-domain approach. Proceedings of SPIE, 2009, , .	0.8	0
182	Coupling Between Split-Ring Resonators. , 2009, , .		0
183	Generation of 3D Wannier Functions. , 2009, , .		0
184	Photonic Metamaterials by Direct Laser Writing. , 2009, , .		0
185	Absolute extinction cross-section of individual magnetic split-ring resonators. Nature Photonics, 2008, 2, 614-617.	15.6	88
186	Wannier-function based scattering-matrix formalism for photonic crystal circuitry. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 202.	0.9	17
187	Chaotic scattering of solitons on point defects in fiber Bragg gratings. Optics Express, 2008, 16, 10170.	1.7	1
188	Far-off-resonant wave interaction in one-dimensional photonic crystals with quadratic nonlinearity. Physical Review A, 2008, 77, .	1.0	0
189	Photonic crystals with anomalous dispersion: Unconventional propagating modes in the photonic band gap. Physical Review B, 2008, 77, .	1.1	19
190	Quantitative Analysis of Certain Nano-Plasmonic Systems. , 2008, , .		0
191	Efficient modeling of nonlinear wave propagation and radiation dynamics in nano-photonic systems. , 2007, , .		0
192	Thermal radiation in photonic crystals. Physical Review B, 2007, 75, .	1.1	46
193	Measuring randomness with periodic media. Photonics and Nanostructures - Fundamentals and Applications, 2007, 5, 29-36.	1.0	4
194	Periodic nanostructures for photonics. Physics Reports, 2007, 444, 101-202.	10.3	399
195	Solitary wave formation in oneâ€dimensional photonic crystals. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3591-3599.	0.8	0
196	Preface: phys. stat. sol. (a) 204/11. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3587-3587.	0.8	0
197	A Krylovâ€subspace based solver for the linear and nonlinear Maxwell equations. Physica Status Solidi (B): Basic Research, 2007, 244, 3479-3496.	0.7	14
198	Preface: phys. stat. sol. (b) 244/10. Physica Status Solidi (B): Basic Research, 2007, 244, 3417-3418.	0.7	0

#	Article	IF	CITATIONS
199	Higher-Order Time-Domain Simulations of Maxwell's Equations Using Krylov-Subspace Methods. Journal of Computational and Theoretical Nanoscience, 2007, 4, 627-634.	0.4	16
200	Improving the Impedance Matching in Photonic Crystal Waveguides. , 2006, , .		0
201	All-optical switching and slow light in photonic-crystal waveguide-resonator structures. , 2006, , .		0
202	On the Solid-State Theoretical Description of Photonic Crystals. , 2006, , 1-22.		0
203	Polymeric Photonic Crystal Lasers. , 2006, , 247-265.		0
204	Three-Dimensional Lithography of Photonic Crystals. , 2006, , 153-173.		2
205	Nonlinear wave interaction in photonic band gap materials. Photonics and Nanostructures - Fundamentals and Applications, 2006, 4, 75-88.	1.0	10
206	Lasing action in two-dimensional organic photonic crystal lasers with hexagonal symmetry. Applied Physics B: Lasers and Optics, 2006, 82, 539-541.	1.1	9
207	Justification of the nonlinear Schrödinger equation in spatially periodic media. Zeitschrift Fur Angewandte Mathematik Und Physik, 2006, 57, 905-939.	0.7	41
208	Shrinkage Precompensation of Holographic Three-Dimensional Photonic-Crystal Templates. Advanced Materials, 2006, 18, 2964-2968.	11,1	59
209	Testing random numbers with periodic structures. Europhysics Letters, 2006, 73, 225-231.	0.7	3
210	All-optical switching, bistability, and slow-light transmission in photonic crystal waveguide-resonator structures. Physical Review E, 2006, 74, 046603.	0.8	95
211	Lasing mechanisms in organic photonic crystal lasers with two-dimensional distributed feedback. Journal of Applied Physics, 2006, 100, 023110.	1.1	11
212	3D photonic bandgap templating using holography and direct laser writing. , 2005, , .		0
213	Nonlinear three-wave interaction in photonic crystals. Applied Physics B: Lasers and Optics, 2005, 81, 225-229.	1.1	15
214	Theory of light diffusion in disordered media with linear absorption or gain. Physical Review B, 2005, 71, .	1.1	37
215	Near-field optical microscopy and spectroscopy of one-dimensional metallic photonic crystal slabs. Physical Review B, 2005, 71, .	1.1	10
216	Wannier basis design and optimization of a photonic crystal waveguide crossing. IEEE Photonics Technology Letters, 2005, 17, 1875-1877.	1.3	38

#	Article	IF	CITATIONS
217	Solid State Theory Meets Photonics:The Curious Optical Properties ofÂPhotonicÂCrystals. Lecture Notes in Physics, 2005, , 1-22.	0.3	2
218	Highly localized Wannier functions for the efficient modeling of photonic crystal circuits. , 2005, , .		2
219	General theory of nonresonant wave interaction: Giant soliton shift in photonic band gap materials. Europhysics Letters, 2004, 68, 205-211.	0.7	15
220	4. A Solid-State Theoretical Approach to the Optical Properties of Photonic Crystals. Lecture Notes in Physics, 2004, , 55-74.	0.3	0
221	Three-Dimensional Photonic Crystals. Solid State Phenomena, 2004, 99-100, 55-64.	0.3	3
222	Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Materials, 2004, 3, 444-447.	13.3	1,009
223	Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps. Physical Review B, 2004, 70, .	1.1	70
224	All-optical diode in an asymmetrically apodized Kerr nonlinear microresonator system. Photonics and Nanostructures - Fundamentals and Applications, 2004, 2, 181-190.	1.0	20
225	Arbitrary angle waveguiding applications of two-dimensional curvilinear-lattice photonic crystals. Applied Physics Letters, 2004, 84, 4687-4689.	1.5	33
226	Tunable photonic crystal circuits: concepts and designs based on single-pore infiltration. Optics Letters, 2004, 29, 2858.	1.7	71
227	Three-Dimensional Lithography of Photonic Crystals. Advances in Solid State Physics, 2004, , 93-104.	0.8	2
228	Arbitrary angle waveguiding applications of two dimensional curvilinear photonic crystals. , 2004, , .		0
229	The Wannier function approach to photonic crystal circuits. Journal of Physics Condensed Matter, 2003, 15, R1233-R1256.	0.7	94
230	A solid state theoretical approach to the optical properties of photonic crystals. Physica Status Solidi A, 2003, 197, 637-647.	1.7	16
231	Special issue on "Photonic Crystals: Optical Materials for the 21st Century― Physica Status Solidi A, 2003, 197, 593-594.	1.7	10
232	Photonic Bandgap Materials. , 2003, , 133-145.		8
233	Scattering matrix approach to large-scale photonic crystal circuits. Optics Letters, 2003, 28, 619.	1.7	44
234	Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations. Applied Physics Letters, 2003, 82, 1284-1286.	1.5	243

#	Article	IF	CITATIONS
235	Two-dimensional Green tensor and local density of states in finite-sized two-dimensional photonic crystals. Waves in Random and Complex Media, 2003, 13, 9-25.	1.5	34
236	Diffraction properties of two-dimensional photonic crystals. Applied Physics Letters, 2003, 83, 614-616.	1.5	41
237	Angle- and spectrally-resolved Bragg scattering on two-dimensional silicon-based photonic crystals. , 2003, , .		0
238	Defect computations in photonic crystals: a solid state theoretical approach. Nanotechnology, 2003, 14, 177-183.	1.3	22
239	Dispersion relation of 3D photonic crystals based on macroporous silicon. Materials Research Society Symposia Proceedings, 2002, 722, 681.	0.1	5
240	Semiclassical theory of lasing in photonic crystals. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 2215.	0.9	69
241	Theory of fluorescence in photonic crystals. Physical Review A, 2002, 65, .	1.0	178
242	Photonic band structure theory: assessment and perspectives. Comptes Rendus Physique, 2002, 3, 53-66.	0.3	24
243	Photonic Crystals: Optical Materials for the 21st Century. , 2002, , 41-53.		1
244	Solid state theoretical methods for defect computations in Photonic Crystals. Materials Research Society Symposia Proceedings, 2002, 722, 111.	0.1	7
245	Three-dimensional photonic crystals based on macroporous silicon with modulated pore diameter. Applied Physics Letters, 2001, 78, 1180-1182.	1.5	140
246	Introduction. Optics Express, 2001, 8, 166.	1.7	1
247	Photonic band structure computations. Optics Express, 2001, 8, 167.	1.7	50
248	Two-dimensional local density of states in two-dimensional photonic crystals. Optics Express, 2001, 8, 191.	1.7	34
249	Optical trapping, Field enhancement and Laser cooling in photonic crystals. Optics Express, 2001, 8, 217.	1.7	42
250	Two-dimensional Green's function and local density of states in photonic crystals consisting of a finite number of cylinders of infinite length. Physical Review E, 2001, 63, 046612.	0.8	109
251	Energy-density CPA: a new effective medium theory for classical waves. Physica B: Condensed Matter, 2001, 296, 56-61.	1.3	3
252	Optical characterisation of 2D macroporous silicon photonic crystals with bandgaps around 3.5 and 1.3 μm. Optical Materials, 2001, 17, 7-10.	1.7	42

#	Article	IF	CITATIONS
253	Silicon-Based Photonic Crystals. Advanced Materials, 2001, 13, 377-388.	11.1	309
254	A model system for two-dimensional and three-dimensional photonic crystals: macroporous silicon. Journal of Optics, 2001, 3, S121-S132.	1.5	57
255	Tunable Photonic Crystals. , 2001, , 41-57.		0
256	Multipole Methods for Photonic Crystal Calculations. , 2001, , 527-534.		0
257	Transmission of a microcavity structure in a two-dimensional photonic crystal based on macroporous silicon. Materials Science in Semiconductor Processing, 2000, 3, 487-491.	1.9	23
258	Tunable photonic crystals. , 2000, , 529-543.		0
259	Tunable two-dimensional photonic crystals using liquid crystal infiltration. Physical Review B, 2000, 61, R2389-R2392.	1.1	350
260	Radiating dipoles in photonic crystals. Physical Review E, 2000, 62, 4251-4260.	0.8	55
261	Optical transmission through strong scattering and highly polydisperse media. Europhysics Letters, 1999, 48, 22-28.	0.7	50
262	Comment on "Energy Velocity of Diffusing Waves in Strongly Scattering Media― Physical Review Letters, 1999, 82, 2000-2000.	2.9	7
263	Photonik: Photonische Kristalle: Mikrostrukturierte Festkörper eröffnen neue Wege zur Manipulation von Licht. Physik Journal, 1999, 55, 27-33.	0.1	28
264	Liquid-Crystal Photonic-Band-Gap Materials: The Tunable Electromagnetic Vacuum. Physical Review Letters, 1999, 83, 967-970.	2.9	746
265	Attenuation of optical transmission within the band gap of thin two-dimensional macroporous silicon photonic crystals. Applied Physics Letters, 1999, 75, 3063-3065.	1.5	67
266	Photonic bandgap formation and tunability in certain self-organizing systems. Journal of Lightwave Technology, 1999, 17, 1931-1943.	2.7	111
267	Effective-medium and coherent-potential approximation. , 1998, , 45-50.		0
268	Wave propagation in linear and nonlinear structures. Physica D: Nonlinear Phenomena, 1998, 113, 346-365.	1.3	11
269	Photonic band gap formation in certain self-organizing systems. Physical Review E, 1998, 58, 3896-3908.	0.8	804
270	Transport properties of random arrays of dielectric cylinders. Physical Review B, 1998, 57, 277-288.	1.1	87

#	Article	IF	CITATIONS
271	Optical nonlinear response of a single nonlinear dielectric layer sandwiched between two linear dielectric structures. Physical Review B, 1997, 56, 15090-15099.	1.1	74
272	Macroporous silicon with a complete twoâ€dimensional photonic band gap centered at 5 μm. Applied Physics Letters, 1996, 68, 747-749.	1.5	324
273	Transport properties of random media: An energy-density CPA approach. Physical Review B, 1996, 54, 893-899.	1.1	56
274	Techniques for Bandstructures and Defect States in Photonic Crystals. , 1996, , 465-485.		4
275	Energy Transport Velocity in Random Media. , 1996, , 667-678.		1
276	Transport velocity in two-dimensional random media. Physical Review B, 1995, 52, 10834-10840.	1.1	11
277	Transport Properties of Random Media: A New Effective Medium Theory. Physical Review Letters, 1995, 75, 3442-3445.	2.9	78
278	Transport and scattering mean free paths of classical waves. Physical Review B, 1994, 50, 93-98.	1.1	50
279	Dependence of transmission on number of rows of 2D macroporous silicon photonic band gap material. , 0, , .		0
280	Dependence of transmission on number of rows of 2-D macroporous silicon photonic band gap material. , 0, , .		0
281	Modulated light potentials for state manipulation of quasiparticles in ultra-cold Bose gases. New Journal of Physics, 0, , .	1.2	1
282	Recognizing emerging researchers with a new Journal prize: editorial. Journal of the Optical Society of America B: Optical Physics, 0, , .	0.9	0