Timo Kikas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7217650/publications.pdf

Version: 2024-02-01

		430442	377514
56	1,294 citations	18	34
papers	citations	h-index	g-index
56	56	56	1401
30	30	30	1401
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Extraction and isolation of lignin from ash tree (Fraxinus exselsior) with protic ionic liquids (PILs). Chemosphere, 2022, 290, 133297.	4.2	18
2	Progress in bio-based biodegradable polymer as the effective replacement for the engineering applicators. Journal of Cleaner Production, 2022, 362, 132267.	4.6	10
3	Impact of Policy Instruments in the Implementation of Renewable Sources of Energy in Selected European Countries. Sustainability, 2022, 14, 6314.	1.6	4
4	Effect of Ink and Pretreatment Conditions on Bioethanol and Biomethane Yields from Waste Banknote Paper. Polymers, 2021, 13, 239.	2.0	4
5	Thermochemical and biochemical treatment strategies for resource recovery from agri-food industry wastes., 2021,, 787-807.		2
6	Utilization of Barley Straw as Feedstock for the Production of Different Energy Vectors. Processes, 2021, 9, 726.	1.3	7
7	The efficiency of nitrogen explosion pretreatment on common aspen – Populus tremula: N2– VS steam explosion. Energy, 2021, 220, 119741.	4.5	6
8	Torrefaction of Agricultural and Wood Waste: Comparative Analysis of Selected Fuel Characteristics. Energies, 2021, 14, 2774.	1.6	19
9	Biomass torrefaction: An overview on process parameters, economic and environmental aspects and recent advancements. Bioresource Technology, 2020, 301, 122737.	4.8	146
10	The Role of Ionic Liquids in the Lignin Separation from Lignocellulosic Biomass. Energies, 2020, 13, 4864.	1.6	42
11	Origin, Impact and Control of Lignocellulosic Inhibitors in Bioethanol Production—A Review. Energies, 2020, 13, 4751.	1.6	52
12	<i>Bioresource recovery in the Australian red meat processing industry: a technical review of strategies for increased circularity</i> ., 2020,,.		2
13	The Effect of Deinking Process on Bioethanol Production from Waste Banknote Paper. Processes, 2020, 8, 1563.	1.3	4
14	Biomass Pretreatment with the Szego Millâ,,¢ for Bioethanol and Biogas Production. Processes, 2020, 8, 1327.	1.3	9
15	Bioenergy Yields from Sequential Bioethanol and Biomethane Production: An Optimized Process Flow. Sustainability, 2020, 12, 272.	1.6	17
16	Genetic modification of cereal plants: A strategy to enhance bioethanol yields from agricultural waste. Industrial Crops and Products, 2020, 150, 112408.	2.5	25
17	Integrating Biomass Pyrolysis with Microbial Conversion Processes to Produce Biofuels and Biochemicals. Biofuels and Biorefineries, 2020, , 235-263.	0.5	0
18	Perennial Grasses as a Substrate for Bioethanol Production. Environmental and Climate Technologies, 2020, 24, 32-40.	0.5	4

#	Article	IF	CITATIONS
19	Characterisation of Electrochemical Sensor-Array for Utilisation in Construction of BOD Bioelectronic Tongue. Environmental and Climate Technologies, 2020, 24, 39-54.	0.5	1
20	Cultivation of Algae Polyculture in Municipal Wastewater with CO ₂ Supply. Environmental and Climate Technologies, 2020, 24, 188-200.	0.5	3
21	Enhancing Bioenergy Yields from Sequential Bioethanol and Biomethane Production by Means of Solid–Liquid Separation of the Substrates. Energies, 2019, 12, 3683.	1.6	11
22	Potentials and challenges in lignocellulosic biofuel production technology. Renewable and Sustainable Energy Reviews, 2019, 111, 44-56.	8.2	210
23	Nitrogen explosive decompression pre-treatment: An alternative to steam explosion. Energy, 2019, 177, 175-182.	4.5	20
24	Potential of cereal-based agricultural residues available for bioenergy production. Data in Brief, 2019, 23, 103829.	0.5	18
25	Potential of bioethanol production waste for methane recovery. Energy, 2019, 173, 133-139.	4.5	25
26	The effect of flue gas explosive decompression pretreatment on methane recovery from bioethanol production waste. Industrial Crops and Products, 2019, 127, 66-72.	2.5	17
27	Thermodynamic, Environmental and Economic Simulation of an Organic Rankine Cycle (ORC) for Waste Heat Recovery: Terceira Island Case Study. Environmental and Climate Technologies, 2019, 23, 347-365.	0.5	5
28	The Efficiency of Nitrogen and Flue Gas as Operating Gases in Explosive Decompression Pretreatment. Energies, 2018, 11, 2074.	1.6	14
29	The utilisation potential of urban greening waste: Tartu case study. Urban Forestry and Urban Greening, 2017, 21, 96-101.	2.3	29
30	Electrooxidation of Hexacyanoferrate(II) Anions and Electroreduction of Oxygen in the Microfabricated Electrochemical Sensor-Array System. ECS Transactions, 2017, 77, 1771-1782.	0.3	4
31	The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries. Energy, 2017, 139, 1-7.	4.5	41
32	Electrochemical Characterization of the Microfabricated Electrochemical Sensorâ€Array System. Electroanalysis, 2017, 29, 249-258.	1.5	3
33	Growth of Scenedesmus obliquus under artificial flue gas with a high sulphur concentration neutralized with oil shale ash. Proceedings of the Estonian Academy of Sciences, 2017, 66, 51.	0.9	2
34	N2 explosive decompression pretreatment of biomass for lignocellulosic ethanol production. Biomass and Bioenergy, 2016, 90, 1-6.	2.9	40
35	Dependence of the hydrolysis efficiency on the lignin content in lignocellulosic material. International Journal of Hydrogen Energy, 2016, 41, 16338-16343.	3.8	44
36	Nitrogen explosion pretreatment of lignocellulosic material for bioethanol production. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2016, 38, 1785-1789.	1.2	9

3

#	Article	IF	CITATIONS
37	Basis of energy crop selection for biofuel production: Cellulose vs. lignin. International Journal of Green Energy, 2016, 13, 49-54.	2.1	42
38	Extrapolation of in situ data from 1-km squares to adjacent squares using remote sensed imagery and airborne lidar data for the assessment of habitat diversity and extent. Environmental Monitoring and Assessment, 2015, 187, 76.	1.3	5
39	Semi-specific Microbacterium phyllosphaerae-based microbial sensor for biochemical oxygen demand measurements in dairy wastewater. Environmental Science and Pollution Research, 2013, 20, 2492-2498.	2.7	6
40	Nitrosomonas sp. Based biosensor for ammonium nitrogen measurement in wastewater. Biotechnology and Bioprocess Engineering, 2013, 18, 1016-1021.	1.4	14
41	Bioelectronic tongue and multivariate analysis: A next step inÂBOD measurements. Water Research, 2013, 47, 2555-2562.	5. 3	19
42	BOD biosensors for pulp and paper industry wastewater analysis. Environmental Science and Pollution Research, 2012, 19, 3039-3045.	2.7	15
43	Comparative study of semi-specific Aeromonas hydrophila and universal Pseudomonas fluorescens biosensors for BOD measurements in meat industry wastewaters. Enzyme and Microbial Technology, 2012, 50, 221-226.	1.6	26
44	Semiâ€specific biosensors for measuring BOD in dairy wastewater. Journal of Chemical Technology and Biotechnology, 2010, 85, 957-961.	1.6	8
45	PSEUDOMONAS PUTIDA P67.2 AND PSEUDOMONAS FLOURESCENS P75 BASED MICROBIAL SENSORS FOR BIOCHEMICAL OXYGEN DEMAND (BOD) MEASUREMENTS IN PHENOLIC WASTEWATERS OF OIL SHALE INDUSTRY. Oil Shale, 2008, 25, 376.	0.5	9
46	Potentiometric measurements in sequential injection analysis lab-on-valve (SIA-LOV) flow-system. Talanta, 2007, 71, 160-164.	2.9	14
47	Hydrogen Production in a Reverse-Flow Autothermal Catalytic Microreactor:  From Evidence of Performance Enhancement to Innovative Reactor Design. Industrial & Engineering Chemistry Research, 2003, 42, 6273-6279.	1.8	23
48	Chemical Plume Tracking. 3. Ascorbic Acid:Â A Biologically Relevant Marker. Analytical Chemistry, 2002, 74, 3605-3610.	3.2	16
49	Chemical Plume Tracking. 2. Multiple-Frequency Modulation. Analytical Chemistry, 2001, 73, 3669-3673.	3.2	6
50	Chemical Plume Tracking. 1. Chemical Information Encoding. Analytical Chemistry, 2001, 73, 3662-3668.	3.2	23
51	Plume-Tracking Robots: A New Application of Chemical Sensors. Biological Bulletin, 2001, 200, 222-226.	0.7	168
52	Virtual Plume. Electroanalysis, 2000, 12, 974-979.	1.5	9
53	Preparation and characterization of platinum coatings for long life-time BOD biosensor. Sensors and Actuators B: Chemical, 1998, 47, 21-29.	4.0	10
54	DETERMINATION OF BOD IN PHENOLIC WASTEWATERS AND A STUDY OF BIODEGRADATION OF PHENOLIC COMPOUNDS. Critical Reviews in Analytical Chemistry, 1998, 28, 70-74.	1.8	0

Timo Kikas

#	Article	IF	CITATIONS
55	Comparative Study of Steam- and Nitrogen Explosion Pretreatment Methods. , 0, , .		O
56	Current progress in anaerobic digestion reactors and parameters optimization. Biomass Conversion and Biorefinery, $0, 1$.	2.9	14