
Gonen Ashkenasy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7217462/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Signaling in Systems Chemistry: Programing Gold Nanoparticles Formation and Assembly Using a Dynamic Bistable Network. Angewandte Chemie, 2021, 133, 4562-4567.	2.0	4
2	Signaling in Systems Chemistry: Programing Gold Nanoparticles Formation and Assembly Using a Dynamic Bistable Network. Angewandte Chemie - International Edition, 2021, 60, 4512-4517.	13.8	16
3	Primitive selection of the fittest emerging through functional synergy in nucleopeptide networks. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	27
4	Dynamic Surface Layer Coiled Coil Proteins Processing Analog-to-Digital Information. Journal of the American Chemical Society, 2021, 143, 17441-17451.	13.7	6
5	Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chemical Reviews, 2020, 120, 4707-4765.	47.7	189
6	Programming Multistationarity in Chemical Replication Networks. ChemSystemsChem, 2020, 2, e1900048.	2.6	7
7	Catalyst: Can Systems Chemistry Unravel the Mysteries of the Chemical Origins of Life?. CheM, 2019, 5, 1917-1920.	11.7	37
8	Rhythm before life. Nature Chemistry, 2019, 11, 681-683.	13.6	6
9	A chemically fueled non-enzymatic bistable network. Nature Communications, 2019, 10, 4636.	12.8	58
10	Open Prebiotic Environments Drive Emergent Phenomena and Complex Behavior. Life, 2019, 9, 45.	2.4	21
11	Emergence of Function in Synthetic Chemical Networks. ChemSystemsChem, 2019, 1, e1900008.	2.6	3
12	The Influence of Modularity, Seeding, and Product Inhibition on Peptide Autocatalytic Network Dynamics. ChemPhysChem, 2018, 19, 2437-2444.	2.1	11
13	Achieving biopolymer synergy in systems chemistry. Chemical Society Reviews, 2018, 47, 5444-5456.	38.1	43
14	Functional Assemblies Emerging in Complex Mixtures of Peptides and Nucleic Acid–Peptide Chimeras. Chemistry - A European Journal, 2018, 24, 10128-10135.	3.3	24
15	Bistability and Bifurcation in Minimal Selfâ€Replication and Nonenzymatic Catalytic Networks. ChemPhysChem, 2017, 18, 1842-1850.	2.1	18
16	Systems chemistry. Chemical Society Reviews, 2017, 46, 2543-2554.	38.1	415
17	Emergence of native peptide sequences in prebiotic replication networks. Nature Communications, 2017, 8, 434.	12.8	51
18	Emergent Catalytic Behavior of Selfâ€Assembled Low Molecular Weight Peptideâ€Based Aggregates and Hydrogels. Chemistry - A European Journal, 2016, 22, 6687-6694.	3.3	115

GONEN ASHKENASY

#	Article	IF	CITATIONS
19	The Strong Influence of Structure Polymorphism on the Conductivity of Peptide Fibrils. Angewandte Chemie - International Edition, 2016, 55, 9988-9992.	13.8	44
20	The Strong Influence of Structure Polymorphism on the Conductivity of Peptide Fibrils. Angewandte Chemie, 2016, 128, 10142-10146.	2.0	9
21	Sequence dependent proton conduction in self-assembled peptide nanostructures. Nanoscale, 2016, 8, 2358-2366.	5.6	44
22	How Catalytic Order Drives the Complexification of Molecular Replication Networks. Israel Journal of Chemistry, 2015, 55, 880-890.	2.3	7
23	A Bistable Switch in Dynamic Thiodepsipeptide Folding and Templateâ€Directed Ligation. Angewandte Chemie, 2015, 127, 12629-12633.	2.0	8
24	A Bistable Switch in Dynamic Thiodepsipeptide Folding and Templateâ€Directed Ligation. Angewandte Chemie - International Edition, 2015, 54, 12452-12456.	13.8	38
25	Robustness of synthetic circadian clocks to multiple environmental changes. Chemical Communications, 2015, 51, 5672-5675.	4.1	9
26	Theoretical Models of Generalized Quasispecies. Current Topics in Microbiology and Immunology, 2015, 392, 141-159.	1.1	4
27	Coupled Oscillations and Circadian Rhythms in Molecular Replication Networks. Journal of Physical Chemistry Letters, 2015, 6, 60-65.	4.6	25
28	Competition and Cooperation in Dynamic Replication Networks. Chemistry - A European Journal, 2015, 21, 648-654.	3.3	46
29	Introducing charge transfer functionality into prebiotically relevant β-sheet peptide fibrils. Chemical Communications, 2014, 50, 6733.	4.1	35
30	A Highâ€Resolution Structure that Provides Insight into Coiled oil Thiodepsipeptide Dynamic Chemistry. Angewandte Chemie - International Edition, 2013, 52, 9944-9947.	13.8	34
31	Effects of mutations in de novo designed synthetic amphiphilic β-sheet peptides on self-assembly of fibrils. Chemical Communications, 2013, 49, 6561.	4.1	29
32	Transient Fibril Structures Facilitating Nonenzymatic Self-Replication. ACS Nano, 2012, 6, 7893-7901.	14.6	79
33	Chemical and light triggering of peptide networks under partial thermodynamic control. Chemical Communications, 2012, 48, 1419-1421.	4.1	47
34	Replication NAND gate with light as input and output. Chemical Communications, 2011, 47, 710-712.	4.1	47
35	Building Logic into Peptide Networks: Bottomâ€Up and Topâ€Đown. Israel Journal of Chemistry, 2011, 51, 106-117.	2.3	49
36	How Symmetry and Order Affect Logic Operations and Computation in Catalytic Chemical Networks. Journal of Computational and Theoretical Nanoscience, 2011, 8, 471-480.	0.4	6

GONEN ASHKENASY

#	Article	IF	CITATIONS
37	βâ€Sheetâ€Induced Chirogenesis in Polymerization of Oligopeptides. ChemPhysChem, 2011, 12, 2771-2780.	2.1	16
38	Lightâ€Induced Peptide Replication Controls Logic Operations in Small Networks. Chemistry - A European Journal, 2010, 16, 12096-12099.	3.3	50
39	Systems Chemistry: Logic Gates, Arithmetic Units, and Network Motifs in Small Networks. Chemistry - A European Journal, 2009, 15, 1765-1775.	3.3	104
40	Selfâ€Replicating Amphiphilic βâ€Sheet Peptides. Angewandte Chemie - International Edition, 2009, 48, 6683-6686.	13.8	137
41	Symmetry and order in systems chemistry. Journal of Chemical Physics, 2009, 130, 164907.	3.0	41
42	The Road to Nonâ€Enzymatic Molecular Networks. Angewandte Chemie - International Edition, 2008, 47, 6128-6136.	13.8	133
43	Design of a directed molecular network. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 10872-10877.	7.1	193
44	Boolean Logic Functions of a Synthetic Peptide Network. Journal of the American Chemical Society, 2004, 126, 11140-11141.	13.7	210