Chenrayan Senthil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7217323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomass-derived biochar materials as sustainable energy sources for electrochemical energy storage devices. Renewable and Sustainable Energy Reviews, 2021, 137, 110464.	8.2	134
2	Micelle templated NiO hollow nanospheres as anode materials in lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 7337-7344.	5.2	80
3	Biomass seaweed-derived nitrogen self-doped porous carbon anodes for sodium-ion batteries: Insights into the structure and electrochemical activity. Journal of Energy Chemistry, 2022, 64, 286-295.	7.1	65
4	Nitrogen-doped carbon-coated Li[Ni0.8Co0.1Mn0.1]O2 cathode material for enhanced lithium-ion storage. Applied Surface Science, 2019, 492, 871-878.	3.1	58
5	Nitrogen Rich Carbon Coated TiO2 Nanoparticles as Anode for High Performance Lithium-ion Battery. Electrochimica Acta, 2017, 255, 417-427.	2.6	56
6	Understanding Excess Li Storage beyond LiC ₆ in Reduced Dimensional Scale Graphene. ACS Nano, 2021, 15, 797-808.	7.3	50
7	Thermochemical conversion of eggshell as biological waste and its application as a functional material for lithium-ion batteries. Chemical Engineering Journal, 2019, 372, 765-773.	6.6	49
8	Ultrathin MoS2 sheets supported on N-rich carbon nitride nanospheres with enhanced lithium storage properties. Applied Surface Science, 2017, 410, 215-224.	3.1	45
9	Flame retardant high-power Li-S flexible batteries enabled by bio-macromolecular binder integrating conformal fractions. Nature Communications, 2022, 13, 145.	5.8	42
10	Electrochemical performance of porous CaFe2O4 as a promising anode material for lithium-ion batteries. Applied Surface Science, 2019, 491, 757-764.	3.1	41
11	An efficient mesoporous carbon nitride (g-C ₃ N ₄) functionalized Pd catalyst for carbon–carbon bond formation reactions. RSC Advances, 2016, 6, 49376-49386.	1.7	35
12	3D-printed architecture of Li-ion batteries and its applications to smart wearable electronic devices. Applied Materials Today, 2020, 20, 100688.	2.3	29
13	Tin selenide/N-doped carbon composite as a conversion and alloying type anode for sodium-ion batteries. Journal of Alloys and Compounds, 2020, 834, 154304.	2.8	29
14	Reactive template synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 nanorod cathode for Li-ion batteries: Influence of temperature over structural and electrochemical properties. Electrochimica Acta, 2019, 317, 398-407.	2.6	27
15	An encapsulation of nitrogen and sulphur dual-doped carbon over Li[Ni0.8Co0.1Mn0.1]O2 for lithium-ion battery applications. Applied Surface Science, 2020, 511, 145580.	3.1	26
16	Metallic 1T MoS2 overlapped nitrogen-doped carbon superstructures for enhanced sodium-ion storage. Applied Surface Science, 2019, 491, 180-186.	3.1	22
17	NASICON type ordered mesoporous lithium-aluminum-titanium-phosphate as electrode materials for lithium-ion batteries. Microporous and Mesoporous Materials, 2017, 240, 57-64.	2.2	20
18	Selective ion transport of catalytic hybrid aerofilm interlayer for long-stable Li-S batteries. Energy Storage Materials, 2022, 47, 472-481.	9.5	20

CHENRAYAN SENTHIL

#	Article	IF	CITATIONS
19	N-rich graphitic carbon nitride functionalized graphene oxide nanosheet hybrid as anode for high performance lithium-ion batteries. Materials Research Express, 2018, 5, 016307.	0.8	18
20	The dual role of micelles as templates and reducing agents for the fabrication of catalytically active hollow silver nanospheres. Chemical Communications, 2015, 51, 733-736.	2.2	17
21	Robust, Ultrasmooth Fluorinated Lithium Metal Interphase Feasible via Lithiophilic Graphene Quantum Dots for Dendriteâ€Less Batteries. Small, 2022, 18, e2200919.	5.2	16
22	Micelle-templated synthesis of Pt hollow nanospheres for catalytic hydrogen evolution. RSC Advances, 2016, 6, 11370-11377.	1.7	14
23	Multichannel red phosphorus with a nanoporous architecture: A novel anode material for sodium-ion batteries. Journal of Power Sources, 2020, 470, 228459.	4.0	14
24	High energy storage of Li-ions on keggin-type polyoxometalate as electrodes for rechargeable lithium batteries. Journal of Physics and Chemistry of Solids, 2020, 142, 109468.	1.9	14
25	Freestanding conversion-type anode via one-pot formation for flexible Li-ion battery. Chemical Engineering Journal, 2022, 427, 130937.	6.6	12
26	Alleviating the initial coulombic efficiency loss and enhancing the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 using β-MnO2. Applied Surface Science, 2019, 489, 336-345.	3.1	10
27	Fabrication of Hollow Co ₃ O ₄ Nanospheres and Their Nanocomposites of CNT and rGO as Highâ€Performance Anodes for Lithiumâ€Ion Batteries. ChemistrySelect, 2018, 3, 5502-5511.	0.7	7
28	Investigation of various cobalt concentrations on LiV2O5 as cathode materials with tunable high rate capability and operating voltage in Li-ion batteries. Applied Surface Science, 2019, 489, 624-630.	3.1	7
29	High energy density of multivalent glassâ€ceramic cathodes for Liâ€ion rechargeable cells and as an efficient photocatalyst for organic degradation. Energy Storage, 2020, 2, e133.	2.3	7
30	Nitrogen self-doped carbon sheets anchored hematite nanodots as efficient Li-ion storage anodes through pseudocapacitance mediated redox process. Journal of Industrial and Engineering Chemistry, 2020, 85, 289-296.	2.9	6
31	Sustainable-inspired design of efficient organic electrodes for rechargeable sodium-ion batteries: Conversion of P-waste into E-wealth device. Sustainable Materials and Technologies, 2021, 28, e00247.	1.7	5
32	Unlocking Rapid Charging and Extended Lifetimes for Li-Ion Batteries Using Freestanding Quantum Conversion-Type Aerofilm Anode. ACS Nano, 2021, 15, 18437-18447.	7.3	5
33	Chemically engineered alloy anode enabling fully reversible conversion reaction: design of a C–Sn-bonded aerofilm anode. Journal of Materials Chemistry A, 2022, 10, 3595-3604.	5.2	4
34	Nickel/carbon core/shell nanotubes: Lanthanum nickel alloy catalyzed synthesis, characterization and studies on their ferromagnetic and lithium-ion storage properties. Materials Research Bulletin, 2014, 60, 621-627.	2.7	3
35	Solvothermally synthesized Ti-rich LiMnTiO4 as cathode material for high Li storage. Journal of Materials Science, 2018, 53, 4406-4416.	1.7	3
36	Vanadium silicon-oxyfluoride nanowires for lithium storage systems: A perfect synergy for dynamic simple spot synthesis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 269, 115164.	1.7	3

#	Article	IF	CITATIONS
37	One dimensional vanadium boron-oxyfluoride nanostructures for lithium storage systems. Materials Letters, 2021, 293, 129706.	1.3	2
38	Nanostructured nonoxide nanomaterials an introduction. , 2022, , 1-24.		2
39	Experimental dataset on tailoring hematite nanodots embedded nitrogen-rich carbon layers for lithium-ion batteries. Data in Brief, 2020, 30, 105472.	0.5	1
40	Fabrication of ZnO Hollow Nanospheres and Their Electrochemical Reactivity in Lithium Ion Batteries (LIBs). Journal of Nanoelectronics and Optoelectronics, 2015, 10, 135-139.	0.1	1