Masato Kida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7217241/publications.pdf

Version: 2024-02-01

236612 223531 2,300 65 25 46 h-index citations g-index papers 69 69 69 1098 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough. Marine and Petroleum Geology, 2015, 66, 471-486.	1.5	207
2	Permeability of sediment cores from methane hydrate deposit in the Eastern Nankai Trough. Marine and Petroleum Geology, 2015, 66, 487-495.	1.5	173
3	Mechanical behavior of hydrate-bearing pressure-core sediments visualized under triaxial compression. Marine and Petroleum Geology, 2015, 66, 451-459.	1.5	120
4	Permeability variation and anisotropy of gas hydrate-bearing pressure-core sediments recovered from the Krishna–Godavari Basin, offshore India. Marine and Petroleum Geology, 2019, 108, 524-536.	1.5	113
5	Pressure-core-based reservoir characterization for geomechanics: Insights from gas hydrate drilling during 2012–2013 at the eastern Nankai Trough. Marine and Petroleum Geology, 2017, 86, 1-16.	1.5	112
6	Lithological features of hydrate-bearing sediments and their relationship with gas hydrate saturation in the eastern Nankai Trough, Japan. Marine and Petroleum Geology, 2015, 66, 368-378.	1.5	93
7	Structure and thermal expansion of natural gas clathrate hydrates. Chemical Engineering Science, 2006, 61, 2670-2674.	1.9	85
8	Coexistence of structure I and II gas hydrates in Lake Baikal suggesting gas sources from microbial and thermogenic origin. Geophysical Research Letters, 2006, 33, .	1.5	84
9	Pressure core based onshore laboratory analysis on mechanical properties of hydrate-bearing sediments recovered during India's National Gas Hydrate Program Expedition (NGHP) 02. Marine and Petroleum Geology, 2019, 108, 482-501.	1.5	76
10	Effect of methane hydrate morphology on compressional wave velocity of sandy sediments: Analysis of pressure cores obtained in the Eastern Nankai Trough. Marine and Petroleum Geology, 2015, 66, 425-433.	1.5	66
11	Characteristics of Natural Gas Hydrates Occurring in Pore-Spaces of Marine Sediments Collected from the Eastern Nankai Trough, off Japan. Energy & Samp; Fuels, 2009, 23, 5580-5586.	2.5	55
12	Chemical and crystallographic characterizations of natural gas hydrates recovered from a production test site in the eastern Nankai Trough. Marine and Petroleum Geology, 2015, 66, 396-403.	1.5	55
13	Consolidation and hardening behavior of hydrate-bearing pressure-core sediments recovered from the Krishna–Godavari Basin, offshore India. Marine and Petroleum Geology, 2019, 108, 512-523.	1.5	55
14	In Situ Methane Hydrate Morphology Investigation: Natural Gas Hydrate-Bearing Sediment Recovered from the Eastern Nankai Trough Area. Energy & Energy & South States (2016, 30, 5547-5554.	2.5	51
15	Numerical analysis of gas production potential from a gas-hydrate reservoir at Site NGHP-02-16, the Krishna–Godavari Basin, offshore India–Feasibility of depressurization method for ultra-deepwater environment. Marine and Petroleum Geology, 2019, 108, 731-740.	1.5	48
16	Symmetric Stretching Vibration of CH ₄ in Clathrate Hydrate Structures. ChemPhysChem, 2010, 11, 3070-3073.	1.0	40
17	Bulk sediment mineralogy of gas hydrate reservoir at the East Nankai offshore production test site. Marine and Petroleum Geology, 2015, 66, 379-387.	1.5	40
18	Lithological properties of natural gas hydrate–bearing sediments in pressure-cores recovered from the Krishna–Godavari Basin. Marine and Petroleum Geology, 2019, 108, 439-470.	1.5	40

#	Article	IF	Citations
19	Lattice Expansion of Clathrate Hydrates of Methane Mixtures and Natural Gas. Angewandte Chemie - International Edition, 2005, 44, 6928-6931.	7.2	36
20	In Situ Mechanical Properties of Shallow Gas Hydrate Deposits in the Deep Seabed. Geophysical Research Letters, 2019, 46, 14459-14468.	1.5	35
21	Natural gas hydrates with locally different cage occupancies and hydration numbers in Lake Baikal. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	31
22	Isotopic fractionation of methane and ethane hydrates between gas and hydrate phases. Geophysical Research Letters, 2007, 34, .	1.5	30
23	Dissociation behaviour of (tetra-n-butylammonium bromide + tetra-n-butylammonium chloride) mixed semiclathrate hydrate systems. Journal of Chemical Thermodynamics, 2015, 90, 277-281.	1.0	29
24	Molecular and isotopic characteristics of gas hydrate-bound hydrocarbons in southern and central Lake Baikal. Geo-Marine Letters, 2010, 30, 321-329.	0.5	28
25	Model of formation of double structure gas hydrates in Lake Baikal based on isotopic data. Geophysical Research Letters, 2009, 36, .	1.5	27
26	First discovery and formation process of authigenic siderite from gas hydrate–bearing mud volcanoes in fresh water: Lake Baikal, eastern Siberia. Geophysical Research Letters, 2008, 35, .	1.5	25
27	Structure H (sH) Clathrate Hydrate with New Large Molecule Guest Substances. Journal of Physical Chemistry C, 2013, 117, 23469-23475.	1.5	25
28	Hydration numbers and thermal properties of tetra-n-butyl ammonium bromide semiclathrate hydrates determined by ion chromatography and differential scanning calorimetry. Journal of Chemical Thermodynamics, 2018, 123, 32-37.	1.0	25
29	Estimation of Gas Composition and Cage Occupancies in CH ₄ -C ₂ H ₆ Hydrates by CP-MAS ¹³ C NMR Technique. Journal of the Japan Petroleum Institute, 2007, 50, 132-138.	0.4	24
30	Dissociation Termination of Methane–Ethane Hydrates in Temperatureâ€Ramping Tests at Atmospheric Pressure below the Melting Point of Ice. ChemPhysChem, 2011, 12, 1652-1656.	1.0	24
31	Phase Equilibrium Conditions for Clathrate Hydrates of Tetra- <i>n</i> -butylammonium Bromide (TBAB) and Xenon. Journal of Chemical & Data, 2012, 57, 1829-1833.	1.0	24
32	Structural Characterization of Structure H (sH) Clathrate Hydrates Enclosing Nitrogen and 2,2-Dimethylbutane. Journal of Physical Chemistry C, 2015, 119, 9069-9075.	1.5	24
33	Thermal and Crystallographic Properties of Tetra- <i>n</i> -butylammonium Bromide + Tetra- <i>n</i> -butylammonium Chloride Mixed Semiclathrate Hydrates. Journal of Chemical & Engineering Data, 2016, 61, 3334-3340.	1.0	24
34	Crystallographic and geochemical properties of natural gas hydrates accumulated in the National Gas Hydrate Program Expedition 02 drilling sites in the Krishna-Godavari Basin off India. Marine and Petroleum Geology, 2019, 108, 471-481.	1.5	23
35	Characterization of the ionic clathrate hydrate of tetra- <i>n</i> -butylammonium acrylate. Canadian Journal of Chemistry, 2015, 93, 954-959.	0.6	22
36	Thermal anomalies associated with shallow gas hydrates in the K-2 mud volcano, Lake Baikal. Geo-Marine Letters, 2012, 32, 407-417.	0.5	20

#	Article	IF	CITATIONS
37	Isotopic composition of dissolved inorganic carbon in subsurface sediments of gas hydrate-bearing mud volcanoes, Lake Baikal: implications for methane and carbonate origin. Geo-Marine Letters, 2010, 30, 427-437.	0.5	17
38	Dissociation Behavior of Methaneâ [^] Ethane Mixed Gas Hydrate Coexisting Structures I and II. Journal of Physical Chemistry A, 2010, 114, 9456-9461.	1.1	17
39	Phase Transition of Tetra- <i>n</i> -butylammonium Bromide Hydrates Enclosing Krypton. Journal of Chemical & Che	1.0	17
40	13C Chemical Shifts of Propane Molecules Encaged in Structure II Clathrate Hydrate. Journal of Physical Chemistry A, 2011, 115, 643-647.	1.1	16
41	Structural properties of methane and butane mixed-gas hydrates. Chemical Engineering Science, 2016, 140, 10-15.	1.9	16
42	Improvement of gas hydrate preservation by increasing compression pressure to simple hydrates of methane, ethane, and propane. Japanese Journal of Applied Physics, 2017, 56, 095601.	0.8	16
43	Crystallization of authigenic carbonates in mud volcanoes at Lake Baikal. Geochemistry International, 2008, 46, 985-995.	0.2	15
44	Chemical Shift Changes and Line Narrowing in ¹³ C NMR Spectra of Hydrocarbon Clathrate Hydrates. Journal of Physical Chemistry A, 2013, 117, 4108-4114.	1.1	14
45	Natural Gas Hydrates Recovered from the Umitaka Spur in the Joetsu Basin, Japan: Coexistence of Two Structure-I Hydrates with Distinctly Different Textures and Gas Compositions within a Massive Structure. ACS Earth and Space Chemistry, 2020, 4, 77-85.	1.2	14
46	Upwarding gas source and postgenetic processes in the shallow sediments from the ARAON Mounds, Chukchi Sea. Journal of Natural Gas Science and Engineering, 2020, 76, 103223.	2.1	13
47	Evaluation of failure modes and undrained shear strength by cone penetrometer for Natural Gas hydrate-bearing pressure-core sediment samples recovered from the Krishna–Godavari Basin, offshore India. Marine and Petroleum Geology, 2019, 108, 502-511.	1.5	12
48	Effective control of gas hydrate dissociation above the melting point of ice. Physical Chemistry Chemical Physics, 2011, 13, 18481.	1.3	11
49	Raman spectroscopic and calorimetric observations on natural gas hydrates with cubic structures I and II obtained from Lake Baikal. Geo-Marine Letters, 2012, 32, 419-426.	0.5	11
50	Phase Equilibrium for Gas Hydrates Formed from Deuterium Oxide. Journal of Chemical & Engineering Data, 2015, 60, 1939-1944.	1.0	11
51	Clathrate Hydrate Equilibrium in Methane–Water Systems with the Addition of Monosaccharide and Sugar Alcohol. Journal of Chemical & Engineering Data, 2017, 62, 440-444.	1.0	11
52	Mechanical properties of polycrystalline tetrahydrofuran hydrates as analogs for massive natural gas hydrates. Journal of Natural Gas Science and Engineering, 2021, 96, 104284.	2.1	11
53	Microscopic Equilibrium Determination for Structure-H (sH) Clathrate Hydrates at the Liquid–Liquid Interface: Krypton–Liquid Hydrocarbon–Water System. Journal of Chemical & Deta, 2012, 57, 2614-2618.	1.0	10
54	CO2 capture from CH4–CO2 mixture by gas–solid contact with tetrahydrofuran clathrate hydrate. Chemical Physics, 2020, 538, 110863.	0.9	10

#	Article	IF	CITATIONS
55	Structure H Clathrate Hydrates in Methaneâ^'Halogenic Large Molecule Substanceâ€"Water Systems. Journal of Physical Chemistry C, 2019, 123, 17170-17175.	1.5	8
56	Geochemistry of Pore Waters from Gas Hydrate-bearing Sediment Cores Retrieved at the Sea of Okhotsk. Journal of Geography (Chigaku Zasshi), 2009, 118, 194-206.	0.1	7
57	Pressurization effects on methane hydrate dissociation. Japanese Journal of Applied Physics, 2014, 53, 018003.	0.8	7
58	Crystal Phase Boundaries of Structure-H (sH) Clathrate Hydrates with Rare Gas (Krypton and Xenon) and Bromide Large Molecule Guest Substances. Journal of Chemical & Engineering Data, 2014, 59, 1704-1709.	1.0	7
59	Crystal Phase Conditions of Semiclathrate Hydrates in Nitrogen–Tetra- <i>n</i> -butylammonium Bromide–Water Systems below 1 MPa. Journal of Chemical & Engineering Data, 2019, 64, 2843-2848.	1.0	7
60	Changes in the 13C NMR spectra of tetra-n-butylammonium chloride by clathrate hydration. Chemical Physics, 2019, 522, 233-237.	0.9	7
61	Contribution of water molecules to methane hydrate dissociation. Japanese Journal of Applied Physics, 2015, 54, 065502.	0.8	5
62	Thermodynamic and crystallographic properties depending on hydration numbers in tetra-n-butylammonium chloride semiclathrate hydrates. Journal of Chemical Thermodynamics, 2020, 142, 106004.	1.0	5
63	Hydrate Equilibrium Conditions for Water, Diethylene Glycol Monoethyl Ether Acetate, and Methane. Journal of Chemical & Deta, 2016, 61, 3692-3697.	1.0	4
64	Conformation Selectivity and Disharmony of the Lattice Constant Depending on the Guest Size in Clathrate Hydrates. Journal of Physical Chemistry C, 2022, 126, 58-65.	1.5	4
65	Impact of High Methane Flux on the Properties of Pore Fluid and Methane-Derived Authigenic Carbonate in the ARAON Mounds, Chukchi Sea. Frontiers in Marine Science, 0, 9, .	1.2	1