
Carmen Herranz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7217013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biochemical and Genetic Evidence that Enterococcus faecium L50 Produces Enterocins L50A and L50B, the sec -Dependent Enterocin P, and a Novel Bacteriocin Secreted without an N-Terminal Extension Termed Enterocin Q. Journal of Bacteriology, 2000, 182, 6806-6814.	1.0	238
2	Review: Bacteriocins of Lactic Acid Bacteria. Food Science and Technology International, 2001, 7, 281-305.	1.1	201
3	Antimicrobial activity, antibiotic susceptibility and virulence factors of Lactic Acid Bacteria of aquatic origin intended for use as probiotics in aquaculture. BMC Microbiology, 2013, 13, 15.	1.3	168
4	Characterization of Garvicin ML, a Novel Circular Bacteriocin Produced by <i>Lactococcus garvieae</i> DCC43, Isolated from Mallard Ducks (<i>Anas platyrhynchos</i>). Applied and Environmental Microbiology, 2011, 77, 369-373.	1.4	98
5	Review: Bacteriocins of Lactic Acid Bacteria. Food Science and Technology International, 2001, 7, 281-305.	1.1	97
6	Enterocin P Selectively Dissipates the Membrane Potential of Enterococcus faecium T136. Applied and Environmental Microbiology, 2001, 67, 1689-1692.	1.4	66
7	InÂvitro and inÂvivo evaluation of lactic acid bacteria of aquatic origin as probiotics for turbot (Scophthalmus maximus L.) farming. Fish and Shellfish Immunology, 2014, 41, 570-580.	1.6	65
8	Enterococcus faecium P21: a strain occurring naturally in dry-fermented sausages producing the class II bacteriocins enterocin A and enterocin B. Food Microbiology, 2001, 18, 115-131.	2.1	63
9	Strategies to increase the hygienic and economic value of fresh fish: Biopreservation using lactic acid bacteria of marine origin. International Journal of Food Microbiology, 2016, 223, 41-49.	2.1	62
10	Optimization of enterocin P production by batch fermentation of Enterococcus faecium P13 at constant pH. Applied Microbiology and Biotechnology, 2001, 56, 378-383.	1.7	52
11	Cloning and Heterologous Production of Hiracin JM79, a Sec-Dependent Bacteriocin Produced by <i>Enterococcus hirae</i> DCH5, in Lactic Acid Bacteria and <i>Pichia pastoris</i> . Applied and Environmental Microbiology, 2008, 74, 2471-2479.	1.4	52
12	Amino acid and nucleotide sequence, adjacent genes, and heterologous expression of hiracin JM79, a sec-dependent bacteriocin produced byEnterococcus hiraeDCH5, isolated from Mallard ducks (Anas) Tj ETQq	000 kgBT /C	Overstack 10 Tf
13	Cloning, production and functional expression of enterocin P, a sec-dependent bacteriocin produced by Enterococcus faecium P13, in Escherichia coli. International Journal of Food Microbiology, 2005, 103, 239-250.	2.1	49
14	Antimicrobial and safety aspects, and biotechnological potential of bacteriocinogenic enterococci isolated from mallard ducks (Anas platyrhynchos). International Journal of Food Microbiology, 2007, 117, 295-305.	2.1	46
15	Protein expression vector and secretion signal peptide optimization to drive the production, secretion, and functional expression of the bacteriocin enterocin A in lactic acid bacteria. Journal of Biotechnology, 2011, 156, 76-86.	1.9	46
16	Use of the Yeast Pichia pastoris as an Expression Host for Secretion of Enterocin L50, a Leaderless Two-Peptide (L50A and L50B) Bacteriocin from Enterococcus faecium L50. Applied and Environmental Microbiology, 2010, 76, 3314-3324.	1.4	44
17	Production of Enterocin P, an Antilisterial Pediocin-Like Bacteriocin from Enterococcus faecium P13, in Pichia pastoris. Antimicrobial Agents and Chemotherapy, 2005, 49, 3004-3008.	1.4	43
18	Inhibition of fish pathogens by the microbiota from rainbow trout (Oncorhynchus mykiss , Walbaum) and rearing environment. Anaerobe, 2015, 32, 7-14.	1.0	42

CARMEN HERRANZ

#	Article	IF	CITATIONS
19	Antimicrobial activity of Enterococcus faecium L50, a strain producing enterocins L50 (L50A and L50B), P and Q, against beer-spoilage lactic acid bacteria in broth, wort (hopped and unhopped), and alcoholic and non-alcoholic lager beers. International Journal of Food Microbiology, 2008, 125, 293-307.	2.1	41
20	Biochemical and Genetic Evidence of Enterocin P Production by Two Enterococcus faecium -Like Strains Isolated from Fermented Sausages. Current Microbiology, 1999, 39, 282-290.	1.0	40
21	Sec-Mediated Secretion of Bacteriocin Enterocin P by Lactococcus lactis. Applied and Environmental Microbiology, 2005, 71, 1959-1963.	1.4	40
22	Genes Encoding Bacteriocins and Their Expression and Potential Virulence Factors of Enterococci Isolated from Wood Pigeons (Columba palumbus). Journal of Food Protection, 2006, 69, 520-531.	0.8	40
23	Cloning strategies for heterologous expression of the bacteriocin enterocin A by Lactobacillus sakei Lb790, Lb. plantarum NC8 and Lb. casei CECT475. Microbial Cell Factories, 2015, 14, 166.	1.9	38
24	Enterocin P Causes Potassium Ion Efflux from Enterococcus faecium T136 Cells. Antimicrobial Agents and Chemotherapy, 2001, 45, 901-904.	1.4	37
25	Use of the usp45 lactococcal secretion signal sequence to drive the secretion and functional expression of enterococcal bacteriocins in Lactococcus lactis. Applied Microbiology and Biotechnology, 2011, 89, 131-143.	1.7	36
26	Immunochemical Characterization of Temperature-Regulated Production of Enterocin L50 (EntL50A) Tj ETQq0 0 (Microbiology, 2006, 72, 7634-7643.) rgBT /Ov 1.4	erlock 10 Tf 35
27	Cloning, production and expression of the bacteriocin enterocin A produced by Enterococcus faecium PLBC21 in Lactococcus lactis. Applied Microbiology and Biotechnology, 2007, 76, 667-675.	1.7	34
28	Phenotypic and genetic evaluations of biogenic amine production by lactic acid bacteria isolated from fish and fish products. International Journal of Food Microbiology, 2011, 146, 212-216.	2.1	34
29	Enterococcus faecalis strains from food, environmental, and clinical origin produce ACE-inhibitory peptides and other bioactive peptides during growth in bovine skim milk. International Journal of Food Microbiology, 2013, 166, 93-101.	2.1	33
30	Cloning, Production, and Functional Expression of the Bacteriocin Enterocin A, Produced by Enterococcus faecium T136, by the Yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans. Applied and Environmental Microbiology, 2012, 78, 5956-5961.	1.4	32
31	Generation of Polyclonal Antibodies of Predetermined Specificity against Pediocin PA-1. Applied and Environmental Microbiology, 1998, 64, 4536-4545.	1.4	30
32	Characterization of Pediococcus acidilactici strains isolated from rainbow trout (Oncorhynchus) Tj ETQq0 0 0 rgB Organisms, 2016, 119, 129-143.	T /Overloc 0.5	k 10 Tf 50 2 29
33	Antimicrobial activity and occurrence of bacteriocin structural genes in Enterococcus spp. of human and animal origin isolated in Portugal. Archives of Microbiology, 2010, 192, 927-936.	1.0	28
34	Development of Bacteriocinogenic Strains of <i>Saccharomyces cerevisiae</i> Heterologously Expressing and Secreting the Leaderless Enterocin L50 Peptides L50A and L50B from <i>Enterococcus faecium</i> L50. Applied and Environmental Microbiology, 2009, 75, 2382-2392.	1.4	27
35	Bacteriocin production by lactic acid bacteria isolated from fish, seafood and fish products. European Food Research and Technology, 2015, 241, 341-356.	1.6	26
36	Evaluation of <i>Enterococcus</i> spp. from Rainbow Trout (<i>Oncorhynchus mykiss</i> , Walbaum), Feed, and Rearing Environment Against Fish Pathogens. Foodborne Pathogens and Disease, 2015, 12, 311-322.	0.8	26

CARMEN HERRANZ

#	Article	IF	CITATIONS
37	Different impact of heat-inactivated and viable lactic acid bacteria of aquatic origin on turbot (Scophthalmus maximus L.) head-kidney leucocytes. Fish and Shellfish Immunology, 2015, 44, 214-223.	1.6	25
38	Performance and Applications of Polyclonal Antipeptide Antibodies Specific for the Enterococcal Bacteriocin Enterocin P. Journal of Agricultural and Food Chemistry, 2004, 52, 2247-2255.	2.4	24
39	Cloning, production, and functional expression of the bacteriocin sakacin A (SakA) and two SakA-derived chimeras in lactic acid bacteria (LAB) and the yeasts Pichia pastoris and Kluyveromyces lactis. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 977-993.	1.4	23
40	Nisin Z Production by Lactococcus lactis subsp. cremoris WA2-67 of Aquatic Origin as a Defense Mechanism to Protect Rainbow Trout (Oncorhynchus mykiss, Walbaum) Against Lactococcus garvieae. Marine Biotechnology, 2015, 17, 820-830.	1.1	21
41	Identification of Bacteriocin Genes in Enterococci Isolated from Game Animals and Saltwater Fish. Journal of Food Protection, 2011, 74, 1252-1260.	0.8	19
42	Chimeras of Mature Pediocin PA-1 Fused to the Signal Peptide of Enterocin P Permits the Cloning, Production, and Expression of Pediocin PA-1 in Lactococcus lactis. Journal of Food Protection, 2007, 70, 2792-2798.	0.8	18
43	Use of Synthetic Genes for Cloning, Production and Functional Expression of the Bacteriocins Enterocin A and Bacteriocin E 50-52 by Pichia pastoris and Kluyveromyces lactis. Molecular Biotechnology, 2014, 56, 571-583.	1.3	18
44	Solution Structure of Enterocin HF, an Antilisterial Bacteriocin Produced by <i>Enterococcus faecium</i> M3K31. Journal of Agricultural and Food Chemistry, 2015, 63, 10689-10695.	2.4	17
45	Cloning and expression of synthetic genes encoding native, hybrid- and bacteriocin-derived chimeras from mature class IIa bacteriocins, by Pichia pastoris (syn. Komagataella spp.). Food Research International, 2019, 121, 888-899.	2.9	17
46	Cloning and Expression of Synthetic Genes Encoding the Broad Antimicrobial Spectrum Bacteriocins SRCAM 602, OR-7, E-760, and L-1077, by RecombinantPichia pastoris. BioMed Research International, 2015, 2015, 1-11.	0.9	16
47	Antibodies to a synthetic 1–9-N-terminal amino acid fragment of mature pediocin PA-1: sensitivity and specificity for pediocin PA-1 and cross-reactivity against Class IIa bacteriocins. Microbiology (United) Tj ETQq1	1 0.78#314	∙rg B T /Over¦o
48	Safety assessment, genetic relatedness and bacteriocin activity of potential probiotic Lactococcus lactis strains from rainbow trout (Oncorhynchus mykiss, Walbaum) and rearing environment. European Food Research and Technology, 2015, 241, 647-662.	1.6	12
49	Evaluation of bacteriocinogenic activity, safety traits and biotechnological potential of fecal lactic acid bacteria (LAB), isolated from Griffon Vultures (Gyps fulvus subsp. fulvus). BMC Microbiology, 2016, 16, 228.	1.3	12
50	Genetic and Biochemical Evidence That Recombinant <i>Enterococcus</i> spp. Strains Expressing Gelatinase (GelE) Produce Bovine Milk-Derived Hydrolysates with High Angiotensin Converting Enzyme-Inhibitory Activity (ACE-IA). Journal of Agricultural and Food Chemistry, 2014, 62, 5555-5564.	2.4	11
51	Safety assessment and molecular genetic profiling by pulsed-field gel electrophoresis (PFGE) and PCR-based techniques of Enterococcus faecium strains of food origin. LWT - Food Science and Technology, 2016, 65, 357-362.	2.5	10
52	Use of Genetic and Immunological Probes for Pediocin PA-1 Gene Detection and Quantification of Bacteriocin Production inPediococcus acidilacticiStrains of Meat Origin. Food and Agricultural Immunology, 2000, 12, 299-310.	0.7	8
53	Biochemical, genetic and transcriptional characterization of multibacteriocin production by the anti-pneumococcal dairy strain Streptococcus infantariusÂLP90. PLoS ONE, 2020, 15, e0229417.	1.1	7
54	Draft Genome Sequence of the Bacteriocin-Producing Strain <i>Enterococcus faecium</i> M3K31, Isolated from Griffon Vultures (<i>Gyps fulvus</i> subsp. <i>fulvus</i>). Genome Announcements, 2016, 4, .	0.8	6

#	ARTICLE	IF	CITATIONS
55	Natural and Heterologous Production of Bacteriocins. , 2011, , 115-143.		3
56	Controlled enterolysin A-mediated lysis and production of angiotensin converting enzyme-inhibitory bovine skim milk hydrolysates by recombinant Lactococcus lactis. International Dairy Journal, 2014, 34, 100-103.	1.5	3
57	Biotechnological potential and in vitro safety assessment of Lactobacillus curvatus BCS35, a multibacteriocinogenic strain isolated from dry-salted cod (Gadus morhua). LWT - Food Science and Technology, 2019, 112, 108219.	2.5	3
58	Draft Genome Sequence of the Bacteriocinogenic Strain <i>Enterococcus faecalis</i> DBH18, Isolated from Mallard Ducks (<i>Anas platyrhynchos</i>). Genome Announcements, 2016, 4, .	0.8	2