Lynne B Mccusker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7216411/publications.pdf

Version: 2024-02-01

81900 106344 4,803 116 39 65 citations g-index h-index papers 125 125 125 3987 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structure of the Polycrystalline Zeolite Catalyst IM-5 Solved by Enhanced Charge Flipping. Science, 2007, 315, 1113-1116.	12.6	239
2	The triple helix inside the large-pore aluminophosphate molecular sieve VPI-5. Zeolites, 1991, 11, 308-313.	0.5	235
3	Cyclo-?-peptides: Structure and tubular stacking of cyclic tetramers of 3-aminobutanoic acid as determined from powder diffraction data. Helvetica Chimica Acta, 1997, 80, 173-182.	1.6	209
4	Exceptional Ion-Exchange Selectivity in a Flexible Open Framework Lanthanum(III)tetrakisphosphonate. Journal of the American Chemical Society, 2009, 131, 18112-18118.	13.7	209
5	Complex zeolite structure solved by combining powder diffraction and electron microscopy. Nature, 2006, 444, 79-81.	27.8	200
6	Metalâ^Peptide Frameworks (MPFs):  "Bioinspired―Metal Organic Frameworks. Journal of the American Chemical Society, 2008, 130, 2517-2526.	13.7	163
7	Ordered silicon vacancies in the framework structure of the zeolite catalyst SSZ-74. Nature Materials, 2008, 7, 631-635.	27.5	156
8	The structure determination and rietveld refinement of the aluminophosphate AIPO4-18. Zeolites, 1991, 11, 654-661.	0.5	129
9	Charge flipping combined with histogram matching to solve complex crystal structures from powder diffraction data. Zeitschrift FĽr Kristallographie, 2007, 222, .	1.1	123
10	Controlling the Aluminum Distribution in the Zeolite Ferrierite via the Organic Structure Directing Agent. Chemistry of Materials, 2013, 25, 3654-3661.	6.7	105
11	Zeolites with Continuously Tuneable Porosity. Angewandte Chemie - International Edition, 2014, 53, 13210-13214.	13.8	104
12	NMR Characterization and Rietveld Refinement of the Structure of Rehydrated AlPO4-34. Journal of Physical Chemistry B, 2000, 104, 5697-5705.	2.6	99
13	The framework topology of zeolite EU-1. Zeolites, 1988, 8, 74-76.	0.5	98
14	Stereochemical Models for Discussing Additions to $\langle i \rangle \hat{1} \pm \langle i \rangle, \langle i \rangle \hat{1}^2 \langle i \rangle \hat{a} \in U$ nsaturated Aldehydes Organocatalyzed by Diarylprolinol or Imidazolidinone Derivatives $\hat{a} \in U$ Is There an $\langle i \rangle \hat{a} \in V$ ($\langle i \rangle i \rangle = V$) ($\langle i \rangle$	1.6	93
15	Location of the 18-crown-6 template in EMC-2 (EMT) Rietveld refinement of the calcined and as-synthesized forms. Microporous Materials, 1994, 2, 269-280.	1.6	85
16	Synthesis optimization and structure analysis of the zincosilicate molecular sieve VPI-9. Microporous Materials, 1996, 6, 295-309.	1.6	83
17	Ab initio structure determination from severely overlapping powder diffraction data. Journal of Applied Crystallography, 1992, 25, 539-543.	4.5	80
18	SSZ-52, a Zeolite with an 18-Layer Aluminosilicate Framework Structure Related to That of the DeNOx Catalyst Cu-SSZ-13. Journal of the American Chemical Society, 2013, 135, 10519-10524.	13.7	79

#	Article	IF	CITATIONS
19	An Ordered Form of the Extra-Large-Pore Zeolite UTD-1:Â Synthesis and Structure Analysis from Powder Diffraction Data. Journal of the American Chemical Society, 1999, 121, 6242-6247.	13.7	78
20	Unraveling the Perplexing Structure of the Zeolite SSZ-57. Science, 2011, 333, 1134-1137.	12.6	73
21	Ionothermal Synthesis and Structure Analysis of an Openâ€Framework Zirconium Phosphate with a High CO ₂ /CH ₄ Adsorption Ratio. Angewandte Chemie - International Edition, 2011, 50, 8139-8142.	13.8	67
22	The Crystal Structure of <scp>D</scp> â€Ribose—At Last!. Angewandte Chemie - International Edition, 2010, 49, 4503-4505.	13.8	63
23	Single-Crystal-Like Diffraction Data from Polycrystalline Materials. Science, 1999, 284, 477-479.	12.6	62
24	Well-Defined Silanols in the Structure of the Calcined High-Silica Zeolite SSZ-70: New Understanding of a Successful Catalytic Material. Journal of the American Chemical Society, 2017, 139, 16803-16812.	13.7	61
25	Crystal structures of the ammonium and hydrogen forms of zeolite rho. Zeolites, 1984, 4, 51-55.	0.5	56
26	Synthesis and Characterization of CIT-13, a Germanosilicate Molecular Sieve with Extra-Large Pore Openings. Chemistry of Materials, 2016, 28, 6250-6259.	6.7	56
27	Locating Organic Guests in Inorganic Host Materials from X-ray Powder Diffraction Data. Journal of the American Chemical Society, 2016, 138, 7099-7106.	13.7	55
28	Zeolite Structures. Studies in Surface Science and Catalysis, 2007, 168, 13-37.	1.5	50
29	SSZ-87: A Borosilicate Zeolite with Unusually Flexible 10-Ring Pore Openings. Journal of the American Chemical Society, 2015, 137, 2015-2020.	13.7	48
30	AIPO4-based molecular sieves synthesized in the presence of di-n-propylamine: Are the structures related?. Zeolites, 1991, 11, 460-465.	0.5	47
31	Structural Aspects of 1,3,5-Benzenetrisamidesâ^'A New Family of Nucleating Agents. Crystal Growth and Design, 2009, 9, 2556-2558.	3.0	47
32	Highâ€Silica Zeolite SSZâ€61 with Dumbbellâ€Shaped Extraâ€Largeâ€Pore Channels. Angewandte Chemie - International Edition, 2014, 53, 10398-10402.	13.8	47
33	Chapter 3 Zeolite structures. Studies in Surface Science and Catalysis, 2001, , 37-67.	1.5	45
34	Aluminum Redistribution during the Preparation of Hierarchical Zeolites by Desilication. Chemistry - A European Journal, 2015, 21, 14156-14164.	3.3	44
35	Characterization and Rietveld refinement of the large pore molecular sieve SAPO-40. Microporous Materials, 1993, 1, 149-160.	1.6	42
36	Structure of the Borosilicate Zeolite Catalyst SSZ-82 Solved Using 2D-XPD Charge Flipping. Journal of the American Chemical Society, 2011, 133, 20604-20610.	13.7	42

#	Article	IF	CITATIONS
37	SSZ-45: A High-Silica Zeolite with Small Pore Openings, Large Cavities, and Unusual Adsorption Properties. Chemistry of Materials, 2014, 26, 3909-3913.	6.7	42
38	Crystallization of Mordenite Platelets using Cooperative Organic Structure-Directing Agents. Journal of the American Chemical Society, 2019, 141, 20155-20165.	13.7	42
39	The crystal structure of a sodium gallosilicate sodalite. Zeolites, 1986, 6, 388-391.	0.5	40
40	Using electron microscopy to complement X-ray powder diffraction data to solve complex crystal structures. Chemical Communications, 2009, , 1439.	4.1	39
41	Structure determination of the zeolite IM-5 using electron crystallography. Zeitschrift Fýr Kristallographie, 2010, 225, 77-85.	1.1	38
42	Synthesis, Structural Elucidation, and Catalytic Properties in Olefin Epoxidation of the Polymeric Hybrid Material [Mo3O9(2-[3(5)-Pyrazolyl]pyridine)]n. Inorganic Chemistry, 2014, 53, 2652-2665.	4.0	38
43	The application of structure envelopes in structure determination from powder diffraction data. Journal of Applied Crystallography, 2002, 35, 243-252.	4. 5	37
44	Cadmium(I) and dicadmium(I). Crystal structures of cadmium(II)-exchanged zeolite A evacuated at 500.degree.C and of its cadmium sorption complex. Journal of the American Chemical Society, 1979, 101, 5235-5239.	13.7	35
45	Ruthenium(II) complexes of benzylphosphines. Inorganic Chemistry, 1982, 21, 1376-1382.	4.0	35
46	Preferential Siting of Aluminum Heteroatoms in the Zeolite Catalyst Alâ€SSZâ€70. Angewandte Chemie - International Edition, 2019, 58, 6255-6259.	13.8	31
47	Practical Aspects of Powder Diffraction Data Analysis. Studies in Surface Science and Catalysis, 1994, , 391-428.	1.5	30
48	Combining precession electron diffraction data with X-ray powder diffraction data to facilitate structure solution. Journal of Applied Crystallography, 2008, 41, 1115-1121.	4.5	30
49	Multidimensional Disorder in Zeolite IM-18 Revealed by Combining Transmission Electron Microscopy and X-ray Powder Diffraction Analyses. Crystal Growth and Design, 2018, 18, 2441-2451.	3.0	30
50	Structure analysis of the novel microporous aluminophosphate IST-1 using synchrotron powder diffraction data and HETCOR MAS NMR. Microporous and Mesoporous Materials, 2003, 65, 43-57.	4.4	29
51	Zeolite structures. Studies in Surface Science and Catalysis, 2005, 157, 41-64.	1.5	29
52	Electron crystallography as a complement to X-ray powder diffraction techniques. Zeitschrift Fur Kristallographie - Crystalline Materials, 2013, 228, 1-10.	0.8	28
53	IUPAC Nomenclature for Ordered Microporous and Mesoporous Materials and its Application to Non-zeolite Microporous Mineral Phases. Reviews in Mineralogy and Geochemistry, 2005, 57, 1-16.	4.8	27
54	Using a non-monochromatic microbeam for serial snapshot crystallography. Journal of Applied Crystallography, 2013, 46, 791-794.	4. 5	27

#	Article	IF	CITATIONS
55	Paired Copper Monomers in Zeolite Omega: The Active Site for Methaneâ€toâ€Methanol Conversion. Angewandte Chemie - International Edition, 2021, 60, 5854-5858.	13.8	27
56	Characterization and structural analysis of differently prepared samples of dehydrated VPI-5. Microporous and Mesoporous Materials, 2000, 34, 99-113.	4.4	26
57	Optimized Synthesis and Structural Characterization of the Borosilicate MCM-70. Journal of Physical Chemistry C, 2009, 113, 9845-9850.	3.1	26
58	Crystal Structure of an Indigo@Silicalite Hybrid Related to the Ancient Maya Blue Pigment. Journal of Physical Chemistry C, 2014, 118, 28032-28042.	3.1	26
59	Advances in Powder Diffraction Methods for Zeolite Structure Analysis. Studies in Surface Science and Catalysis, 1994, , 341-356.	1.5	25
60	Combining Structure Modeling and Electron Microscopy to Determine Complex Zeolite Framework Structures. Angewandte Chemie - International Edition, 2008, 47, 4401-4405.	13.8	24
61	Using <i>FOCUS</i> to solve zeolite structures from three-dimensional electron diffraction data. Journal of Applied Crystallography, 2013, 46, 1017-1023.	4.5	24
62	Zero-coordinate cadmium(II). Over ion exchange. Crystal structures of hydrated and dehydrated zeolite A exchanged with cadmium chloride to give cadmium chloride hydroxide (Cd9.5Cl4(OH)3-A). Journal of the American Chemical Society, 1978, 100, 5052-5057.	13.7	23
63	Rietveld refinement of the crystal structure of the new zeolite mineral gobbinsite. Zeitschrift Fur Kristallographie - Crystalline Materials, 1985, 171, 281-289.	0.8	23
64	Highly selective uptake of carbon dioxide on the zeolite Na _{10.2} KCs _{0.8} -LTA – a possible sorbent for biogas upgrading. Physical Chemistry Chemical Physics, 2016, 18, 16080-16083.	2.8	22
65	Crystal structure of vacuum-dehydrated fully ammonium-exchanged zeolite A. Journal of the American Chemical Society, 1981, 103, 3441-3446.	13.7	21
66	A re-examination of the structure of SAPO-40. Microporous Materials, 1996, 6, 51-54.	1.6	19
67	Synthesis, characterization and crystal structure analysis of an open-framework zirconium phosphate. Microporous and Mesoporous Materials, 2007, 104, 185-191.	4.4	19
68	Serial snapshot crystallography for materials science with SwissFEL. IUCrJ, 2015, 2, 361-370.	2.2	19
69	Exploiting texture to estimate the relative intensities of overlapping reflections. Zeitschrift Fur Kristallographie - Crystalline Materials, 2004, 219, .	0.8	18
70	Synthesis and structure of Mu-33, a new layered aluminophosphate. Microporous and Mesoporous Materials, 2006, 90, 5-15.	4.4	18
71	Editorial: Structure Determination from Powder Diffraction Data. Zeitschrift Fur Kristallographie - Crystalline Materials, 2004, 219, .	0.8	17
72	Can Laue microdiffraction be used to solve and refine complex inorganic structures?. Journal of Applied Crystallography, 2013, 46, 1805-1816.	4.5	17

#	Article	IF	CITATIONS
73	Synthesis and Structural Characterization of the Aluminosilicate LZ-135, a Zeolite Related to ZSM-10. Journal of Physical Chemistry C, 2009, 113, 9838-9844.	3.1	16
74	Advances in exploiting preferred orientation in the structure analysis of polycrystalline materials. Journal of Applied Crystallography, 2013, 46, 173-180.	4.5	16
75	Pinpointing and Quantifying the Aluminum Distribution in Zeolite Catalysts Using Anomalous Scattering at the Al Absorption Edge. Journal of the American Chemical Society, 2021, 143, 17926-17930.	13.7	16
76	Synthesis and structure analysis of the potassium calcium silicate CAS-1. Application of a texture approach to structure solution using data collected in transmission mode. Comptes Rendus Chimie, 2005, 8, 331-339.	0.5	15
77	The Search for Tricyanomethane (Cyanoform). Chemistry - A European Journal, 2010, 16, 7224-7230.	3.3	15
78	SSZâ€27: A Smallâ€Pore Zeolite with Large Heartâ€Shaped Cavities Determined by Using Multiâ€crystal Electron Diffraction. Angewandte Chemie - International Edition, 2019, 58, 13080-13086.	13.8	15
79	Synthesis, Structure, and Characterization of Two Photoluminescent Zirconium Phosphateâ^'Quinoline Compounds. Inorganic Chemistry, 2009, 48, 8947-8954.	4.0	14
80	AB-5 and ABC-6 networks. Materials Research Bulletin, 1987, 22, 1203-1207.	5.2	13
81	Synthesis and structure analysis of the layer silicate DLM-2. Microporous and Mesoporous Materials, 2007, 105, 75-81.	4.4	11
82	Further Investigations of Racemic and Chiral Molecular Sieves of the STW Topology. Chemistry of Materials, 2021, 33, 1752-1759.	6.7	11
83	Synthesis of Zn-containing microporous aluminophosphate with the STA-1 structure. Dalton Transactions, 2011, 40, 8125.	3.3	10
84	Optimizing the input parameters for powder charge flipping. Journal of Applied Crystallography, 2012, 45, 1125-1135.	4.5	10
85	Solving complex open-framework structures from X-ray powder diffraction by direct-space methods using composite building units. Journal of Applied Crystallography, 2013, 46, 1094-1104.	4.5	10
86	lonothermal Synthesis and Structure of a New Layered Zirconium Phosphate. Inorganic Chemistry, 2015, 54, 7953-7958.	4.0	10
87	Preferential Siting of Aluminum Heteroatoms in the Zeolite Catalyst Alâ€SZâ€₹0. Angewandte Chemie, 2019, 131, 6321-6325.	2.0	10
88	Using phases retrieved from two-dimensional projections to facilitate structure solution from X-ray powder diffraction data. Journal of Applied Crystallography, 2011, 44, 1023-1032.	4. 5	9
89	Paired Copper Monomers in Zeolite Omega: The Active Site for Methaneâ€toâ€Methanol Conversion. Angewandte Chemie, 2021, 133, 5918-5922.	2.0	8
90	Rietveld refinement of a chabazite-like aluminophosphate containing a [Ni(1,2-diaminoethane)2O2]2â ⁻ complex bridge. Microporous and Mesoporous Materials, 2001, 47, 269-274.	4.4	7

#	Article	IF	CITATIONS
91	A re-examination of the structure of the germanosilicate zeolite SSZ-77. Solid State Sciences, 2011, 13, 800-805.	3.2	6
92	Synthesis, structure and characterization of ZrPOF-DEA, a microporous zirconium phosphate framework material. Microporous and Mesoporous Materials, 2012, 164, 82-87.	4.4	6
93	Rietveld refinement of the calcined form of SAPO-40. Microporous Materials, 1997, 11, 247-251.	1.6	5
94	Synthesis and structural characterization of Zn-containing DAF-1. New Journal of Chemistry, 2016, 40, 4160-4166.	2.8	5
95	Electron diffraction and the hydrogen atom. Science, 2017, 355, 136-136.	12.6	5
96	Solving the structures of light-atom compounds with powder charge flipping. Journal of Applied Crystallography, 2014, 47, 1569-1576.	4.5	4
97	On the relationship between unit cells and channel systems in high silica zeolites with the "butterfly― projection. Zeitschrift Fur Kristallographie - Crystalline Materials, 2015, 230, 301-309.	0.8	4
98	New advances in zeolite structure analysis. Studies in Surface Science and Catalysis, 2007, , 657-665.	1.5	3
99	Zeolite structure determination using electron crystallography. Studies in Surface Science and Catalysis, 2008, 174, 799-804.	1.5	3
100	Solving the Structures of Polycrystalline Materials: from the Debye-Scherrer Camera to SwissFEL. Chimia, 2014, 68, 19-25.	0.6	3
101	Location of Organic Structure-Directing Agents in Zeolites Using Diffraction Techniques. Structure and Bonding, 2017, , 43-73.	1.0	2
102	SSZâ€27: A Smallâ€Pore Zeolite with Large Heartâ€Shaped Cavities Determined by Using Multiâ€crystal Electron Diffraction. Angewandte Chemie, 2019, 131, 13214-13220.	2.0	2
103	Product characterization by x-ray powder diffraction. , 2001, , 47-49.		1
104	Solving complex zeolite structures — how far can we go?. Studies in Surface Science and Catalysis, 2008, , 3-12.	1.5	1
105	P63/mmc., 2007, , 122-123.		1
106	Structure determination of zeolites by electron crystallography., 0,, 757-758.		1
107	Is the VFI topology compatible with tetrahedral AI?. Studies in Surface Science and Catalysis, 1995, 98, 254-255.	1.5	O
108	Pmmn., 2007,, 34-35.		0

#	Article	IF	CITATIONS
109	InnenrÃ1⁄4cktitelbild: Preferential Siting of Aluminum Heteroatoms in the Zeolite Catalyst Alâ€SSZâ€₹0 (Angew. Chem. 19/2019). Angewandte Chemie, 2019, 131, 6523-6523.	2.0	O
110	Experimental methods for estimating the relative intensities of overlapping reflections. , 2006, , $162\text{-}178$.		0
111	Chemical information and intuition in solving crystal structures. , 2006, , 307-324.		O
112	Cmcm., 2007,, 116-117.		0
113	Pca21., 2007,, 264-265.		O
114	Cmcm., 2007,, 162-163.		0
115	C2/m., 2007, , 338-339.		O
116	Combination of X-ray Powder Diffraction, Electron Diffraction and HRTEM Data. NATO Science for Peace and Security Series B: Physics and Biophysics, 2012, , 303-314.	0.3	0