Biplab Sarkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7216369/publications.pdf

Version: 2024-02-01

471061 433756 42 988 17 31 citations h-index g-index papers 42 42 42 1017 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	On electrical analysis of Al-rich p-AlGaN films for III-nitride UV light emitters. Semiconductor Science and Technology, 2022, 37, 015003.	1.0	4
2	Evidence of thermionic emission in forward biased $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Ga2O3 Schottky diodes at Boltzmann doping limit. Journal of Applied Physics, 2022, 131, .	1.1	11
3	Doping and compensation in heavily Mg doped Al-rich AlGaN films. Applied Physics Letters, 2022, 120, .	1.5	12
4	Generalized Frequency Dependent Small Signal Model for High Frequency Analysis of AlGaN/GaN MOS-HEMTs. IEEE Journal of the Electron Devices Society, 2021, 9, 570-581.	1.2	6
5	High $\langle i \rangle n \langle i \rangle$ -type conductivity and carrier concentration in Si-implanted homoepitaxial AlN. Applied Physics Letters, 2021, 118, .	1.5	25
6	Role of Interface Induced Gap States in Polar AlxGa1â^'xN (0 â‰ ≇ €‰x â‰ ≇ €‰1) Schottky Diodes. Jou Electronic Materials, 2021, 50, 3731-3738.	rnal of	4
7	Temperature dependence of barrier height inhomogeneity in <i>\hat{l}^2</i> -Ga2O3 Schottky barrier diodes. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	0.6	20
8	Self-powered ultraviolet photodiode based on lateral polarity structure GaN films. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	0.6	8
9	Modified Small Signal Circuit of AlGaN/GaN MOS-HEMTs Using Rational Functions. IEEE Transactions on Electron Devices, 2021, 68, 6059-6064.	1.6	3
10	Status of the growth and fabrication of AlGaN-based UV laser diodes for near and mid-UV wavelength. Journal of Materials Research, 2021, 36, 4638-4664.	1.2	25
11	Numerical Simulation of Enhanced-Reliability Filleted-Gate AlGaN/GaN HEMT. Journal of Electronic Materials, 2020, 49, 2018-2031.	1.0	8
12	The 2020 UV emitter roadmap. Journal Physics D: Applied Physics, 2020, 53, 503001.	1.3	289
13	Polarity Control and Nanoscale Optical Characterization of AlGaN-Based Multiple-Quantum-Wells for Ultraviolet C Emitters. ACS Applied Nano Materials, 2020, 3, 5335-5342.	2.4	10
14	The nature of the DX state in Ge-doped AlGaN. Applied Physics Letters, 2020, 116, .	1.5	14
15	The role of chemical potential in compensation control in Si:AlGaN. Journal of Applied Physics, 2020, 127, .	1.1	34
16	Role of polarity in SiN on Al/GaN and the pathway to stable contacts. Semiconductor Science and Technology, 2020, 35, 055007.	1.0	7
17	Shallow Si donor in ion-implanted homoepitaxial AlN. Applied Physics Letters, 2020, 116, .	1.5	20
18	Al Rich AlGaN Based APDs on Single Crystal AlN with Solar Blindness and Room Temperature Operation. , 2019, , .		3

#	Article	IF	CITATIONS
19	(Invited) Advances in Ion Implantation of GaN and AlN. ECS Meeting Abstracts, 2019, , .	0.0	O
20	Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD. Applied Physics Letters, $2018,112,.$	1.5	107
21	On Ni/Au Alloyed Contacts to Mg-Doped GaN. Journal of Electronic Materials, 2018, 47, 305-311.	1.0	17
22	On Using the Volatile Mem-Capacitive Effect of TiO2 Resistive Random Access Memory to Mimic the Synaptic Forgetting Process. Journal of Electronic Materials, 2018, 47, 994-997.	1.0	7
23	Plasma enhanced chemical vapor deposition of SiO2and SiNxon AlGaN: Band offsets and interface studies as a function of Al composition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, 061101.	0.9	6
24	Improving the Conductivity Limits in Si Doped Al Rich AlGaN., 2018,,.		1
25	N- and P- type Doping in Al-rich AlGaN and AlN. ECS Transactions, 2018, 86, 25-30.	0.3	20
26	Thermal conductivity of GaN single crystals: Influence of impurities incorporated in different growth processes. Journal of Applied Physics, 2018, 124, .	1.1	25
27	The influence of point defects on the thermal conductivity of AlN crystals. Journal of Applied Physics, 2018, 123, 185107.	1.1	26
28	On contacts to III-nitride deep-UV emitters. , 2018, , .		O
28	On contacts to III-nitride deep-UV emitters., 2018, , . 6 kW/cm ² UVC laser threshold in optically pumped lasers achieved by controlling point defect formation. Applied Physics Express, 2018, 11, 082101.	1.1	0 46
	6 kW/cm ² UVC laser threshold in optically pumped lasers achieved by controlling point	1.1	
29	6 kW/cm ² UVC laser threshold in optically pumped lasers achieved by controlling point defect formation. Applied Physics Express, 2018, 11, 082101.		46
30	6 kW/cm ² UVC laser threshold in optically pumped lasers achieved by controlling point defect formation. Applied Physics Express, 2018, 11, 082101. Thermal conductivity of single-crystalline AlN. Applied Physics Express, 2018, 11, 071001.	1.1	46
29 30 31	6 kW/cm ² UVC laser threshold in optically pumped lasers achieved by controlling point defect formation. Applied Physics Express, 2018, 11, 082101. Thermal conductivity of single-crystalline AlN. Applied Physics Express, 2018, 11, 071001. N- and P- type Doping in Al-rich AlGaN and AlN. ECS Meeting Abstracts, 2018, MA2018-02, 1283-1283. Defect-free Ni/GaN Schottky barrier behavior with high temperature stability. Applied Physics Letters,	0.0	46 42 1
29 30 31 32	6 kW/cm ² UVC laser threshold in optically pumped lasers achieved by controlling point defect formation. Applied Physics Express, 2018, 11, 082101. Thermal conductivity of single-crystalline AlN. Applied Physics Express, 2018, 11, 071001. N- and P- type Doping in Al-rich AlGaN and AlN. ECS Meeting Abstracts, 2018, MA2018-02, 1283-1283. Defect-free Ni/GaN Schottky barrier behavior with high temperature stability. Applied Physics Letters, 2017, 110, . Performance improvement of ohmic contacts on Al-rich n-AlGaN grown on single crystal AlN	1.1 0.0 1.5	46 42 1 38
29 30 31 32 33	6 kW/cm ² UVC laser threshold in optically pumped lasers achieved by controlling point defect formation. Applied Physics Express, 2018, 11, 082101. Thermal conductivity of single-crystalline AlN. Applied Physics Express, 2018, 11, 071001. N- and P- type Doping in Al-rich AlGaN and AlN. ECS Meeting Abstracts, 2018, MA2018-02, 1283-1283. Defect-free Ni/GaN Schottky barrier behavior with high temperature stability. Applied Physics Letters, 2017, 110, . Performance improvement of ohmic contacts on Al-rich n-AlGaN grown on single crystal AlN substrate using reactive ion etching surface treatment. Applied Physics Express, 2017, 10, 071001. (Invited) Material Considerations for the Development of Ill-Nitride Power Devices. ECS Transactions,	1.1 0.0 1.5	46 42 1 38

#	Article	lF	Citations
37	(Invited) Material Considerations for the Development of III-Nitride Power Devices. ECS Meeting Abstracts, 2017, , .	0.0	O
38	High temperature and low pressure chemical vapor deposition of silicon nitride on AlGaN: Band offsets and passivation studies. Journal of Applied Physics, $2016,119,$.	1.1	22
39	Understanding the gradual reset in Pt/Al ₂ O ₃ /Ni RRAM for synaptic applications. Semiconductor Science and Technology, 2015, 30, 105014.	1.0	66
40	Understanding the influence of E <inf>a</inf> and band-offset toward the conductance modulation in Al <inf>2</inf> O <inf>3</inf> and HfO <inf>2</inf> synaptic RRAM. , 2015, , .		0
41	Dual Floating Gate Unified Memory MOSFET With Simultaneous Dynamic and Non-Volatile Operation. IEEE Electron Device Letters, 2014, 35, 48-50.	2.2	4
42	Sidelobe Suppression in Wigner Distribution Using Non-Linear Apodization., 2009,,.		1