Ryuji Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7216049/publications.pdf

Version: 2024-02-01

		1163117	1199594	
12	322	8	12	
papers	citations	h-index	g-index	
12	12	12	583	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Different Somatic Hypermutation Levels among Antibody Subclasses Disclosed by a New Next-Generation Sequencing-Based Antibody Repertoire Analysis. Frontiers in Immunology, 2017, 8, 389.	4.8	87
2	A new high-throughput sequencing method for determining diversity and similarity of T cell receptor (TCR) \hat{l}_{\pm} and \hat{l}^{2} repertoires and identifying potential new invariant TCR \hat{l}_{\pm} chains. BMC Immunology, 2016, 17, 38.	2.2	66
3	Accumulation of T-cells with selected T-cell receptors in the brains of Japanese encephalitis virus-infected mice. Japanese Journal of Infectious Diseases, 2008, 61, 40-8.	1.2	30
4	Accumulation of invariant NKT cells into inflamed skin in a novel murine model of nickel allergy. Cellular Immunology, 2013, 284, 163-171.	3.0	25
5	Characterization of T Cell Receptors of Th1 Cells Infiltrating Inflamed Skin of a Novel Murine Model of Palladium-Induced Metal Allergy. PLoS ONE, 2013, 8, e76385.	2.5	24
6	Accumulation of Metal-Specific T Cells in Inflamed Skin in a Novel Murine Model of Chromium-Induced Allergic Contact Dermatitis. PLoS ONE, 2014, 9, e85983.	2.5	24
7	NKG2D+ IFN-Î ³ + CD8+ T Cells Are Responsible for Palladium Allergy. PLoS ONE, 2014, 9, e86810.	2.5	23
8	High Clonality of Virus-Specific T Lymphocytes Defined by TCR Usage in the Brains of Mice Infected with West Nile Virus. Journal of Immunology, 2011, 187, 3919-3930.	0.8	18
9	Possible Immune Regulation of Natural Killer T Cells in a Murine Model of Metal Ion-Induced Allergic Contact Dermatitis. International Journal of Molecular Sciences, 2016, 17, 87.	4.1	9
10	Characterization of T cell receptors in a novel murine model of nickel-induced intraoral metal contact allergy. PLoS ONE, 2018, 13, e0209248.	2.5	8
11	Possible involvement of invariant natural killer T cells and mucosal-associated invariant T cells in a murine model of titanium allergy. Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 2018, 30, 1-9.	0.3	5
12	Fexofenadine Suppresses Delayed-Type Hypersensitivity in the Murine Model of Palladium Allergy. International Journal of Molecular Sciences, 2017, 18, 1357.	4.1	3