Tomonari Hirano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7215266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Characterization of highly efficient heavy-ion mutagenesis in Arabidopsis thaliana. BMC Plant Biology, 2011, 11, 161.	3.6	123
2	Comprehensive identification of mutations induced by heavyâ€ion beam irradiation in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2015, 82, 93-104.	5.7	70
3	Different mutational function of low―and highâ€ŀinear energy transfer heavyâ€ion irradiation demonstrated by wholeâ€genome resequencing of Arabidopsis mutants. Plant Journal, 2017, 92, 1020-1030.	5.7	70
4	Molecular nature of mutations induced by high-LET irradiation with argon and carbon ions in Arabidopsis thaliana. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2012, 735, 19-31.	1.0	50
5	Suppressor Screen and Phenotype Analyses Revealed an Emerging Role of the Monofunctional Peroxisomal Enoyl-CoA Hydratase 2 in Compensated Cell Enlargement. Frontiers in Plant Science, 2016, 7, 132.	3.6	41
6	The Conflict Between Cell Proliferation and Expansion Primarily Affects Stem Organogenesis in Arabidopsis. Plant and Cell Physiology, 2014, 55, 1994-2007.	3.1	31
7	Phenotypic differentiation in the morphology and nutrient uptake kinetics among Undaria pinnatifida cultivated at six sites in Japan. Journal of Applied Phycology, 2016, 28, 3447-3458.	2.8	23
8	lon Beam Breeding and Gene Discovery for Function Analyses Using Mutants. Nuclear Physics News, 2015, 25, 30-34.	0.4	22
9	Effect of high-LET Fe-ion beam irradiation on mutation induction in <i>Arabidopsis thaliana</i> . Genes and Genetic Systems, 2013, 88, 189-197.	0.7	21
10	Rapid evaluation of effective linear energy transfer in heavy-ion mutagenesis of Arabidopsis thaliana. Plant Biotechnology, 2012, 29, 441-445.	1.0	20
11	Effect of water velocity on Undaria pinnatifida and Saccharina japonica growth in a novel tank system designed for macroalgae cultivation. Journal of Applied Phycology, 2017, 29, 1429-1436.	2.8	15
12	Morphological and physiological differences among cultivation lines of Undaria pinnatifida in a common garden experiment using a tank culture system. Journal of Applied Phycology, 2017, 29, 2287-2295.	2.8	11
13	DNA damage response in male gametes of Cyrtanthus mackenii during pollen tube growth. AoB PLANTS, 2013, 5, plt004-plt004.	2.3	10
14	AMAP: A pipeline for whole-genome mutation detection in <i>Arabidopsis thaliana</i> . Genes and Genetic Systems, 2016, 91, 229-233.	0.7	8
15	Mutant induction in gametophytes of Undaria pinnatifida (Phaeophyceae) by heavy ion beam irradiation. Phycological Research, 2020, 68, 63-69.	1.6	7
16	Fruit Qualities of Interspecific Hybrid and First Backcross Generations between Red Raspberry and Rubus parvifolius. Journal of the American Society for Horticultural Science, 2021, 146, 445-451.	1.0	3
17	Low Polyphenol Oxidase Mutant Induced by ¹² C ⁶⁺ Ion Beam Irradiation to Protoplasts of Lettuce (<i>Lactuca sativa</i> L.). Horticultural Research (Japan), 2016, 15, 347-353.	0.1	3
18	Mutagenic Effects of Heavy-lon Beam Irradiation to Plant Genome. Cytologia, 2022, 87, 3-6.	0.6	3

Tomonari Hirano

#	Article	IF	CITATIONS
19	Screening for High-Growth Mutants in Sporophytes of <i>Undaria pinnatifida</i> Using Heavy-Ion Beam Irradiation. Cytologia, 2021, 86, 291-295.	0.6	3
20	Double Mutant Analysis with the Large Flower Mutant, ohbana1, to Explore the Regulatory Network Controlling the Flower and Seed Sizes in Arabidopsis thaliana. Plants, 2021, 10, 1881.	3.5	2
21	DNA Damage Response of <i>Cyrtanthus mackenii</i> Male Gametes Following Argon Ion Beam Irradiation. Cytologia, 2021, 86, 311-315.	0.6	2
22	Extending the Cultivation Period of Undaria pinnatifida by Using Regional Strains with Phenotypic Differentiation along the Sanriku Coast in Northern Japan. Phycology, 2021, 1, 129-142.	3.6	2
23	â¡-1. Development of the breeding technology and new cultivar for macroalgae in Sanriku region, Japan. Nippon Suisan Gakkaishi, 2016, 82, 160-160.	0.1	0