Howard N Zelaznik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7215013/publications.pdf

Version: 2024-02-01

64 papers 4,225 citations

147566 31 h-index 62 g-index

64 all docs

64
docs citations

64 times ranked 2545 citing authors

#	Article	IF	CITATIONS
1	Visual salience, not the graspable part of a pictured eating utensil, grabs attention. Attention, Perception, and Psychophysics, 2019, 81, 1454-1463.	0.7	14
2	The Past and Future of Clock-Like Timing in Motor Performance. Kinesiology Review, 2018, 7, 36-41.	0.4	4
3	Deficits in Coordinative Bimanual Timing Precision in Children With Specific Language Impairment. Journal of Speech, Language, and Hearing Research, 2017, 60, 393-405.	0.7	31
4	The efficacy of the Microsoft KinectTM to assess human bimanual coordination. Behavior Research Methods, 2017, 49, 1030-1047.	2.3	9
5	An active balance board system with real-time control of stiffness and time-delay to assess mechanisms of postural stability. Journal of Biomechanics, 2017, 60, 48-56.	0.9	18
6	Limit cycle oscillations in standing human posture. Journal of Biomechanics, 2016, 49, 1170-1179.	0.9	35
7	Evidence That Bimanual Motor Timing Performance Is Not a Significant Factor in Developmental Stuttering. Journal of Speech, Language, and Hearing Research, 2016, 59, 674-685.	0.7	17
8	Action-specific judgment, not perception: Fitts' law performance is related to estimates of target width only when participants are given a performance score. Attention, Perception, and Psychophysics, 2016, 78, 1744-1754.	0.7	3
9	The relationship between intermittent limit cycles and postural instability associated with Parkinson's disease. Journal of Sport and Health Science, 2016, 5, 14-24.	3.3	15
10	The Distinction between Tapping and Circle Drawing with and without Tactile Feedback: An Examination of the Sources of Timing Variance. Quarterly Journal of Experimental Psychology, 2012, 65, 1086-1100.	0.6	32
11	Motor timing deficits in children with Attention-Deficit/Hyperactivity disorder. Human Movement Science, 2012, 31, 255-265.	0.6	38
12	Circle Drawing Does Not Exhibit Auditory–Motor Synchronization. Journal of Motor Behavior, 2011, 43, 185-191.	0.5	18
13	Long-range correlation properties in motor timing are individual and task specific. Psychonomic Bulletin and Review, 2011, 18, 339-346.	1.4	33
14	Synchronization in repetitive smooth movement requires perceptible events. Acta Psychologica, 2011, 136, 432-441.	0.7	23
15	Physically coupling two objects in a bimanual task alters kinematics but not end-state comfort. Experimental Brain Research, 2011, 211, 219-229.	0.7	24
16	Generalized Motor Abilities and Timing Behavior in Children With Specific Language Impairment. Journal of Speech, Language, and Hearing Research, 2010, 53, 383-393.	0.7	80
17	Evidence That a Motor Timing Deficit Is a Factor in the Development of Stuttering. Journal of Speech, Language, and Hearing Research, 2010, 53, 876-886.	0.7	61
18	Timing processes are correlated when tasks share a salient event Journal of Experimental Psychology: Human Perception and Performance, 2010, 36, 1565-1575.	0.7	26

#	Article	IF	CITATIONS
19	Distinct timing mechanisms are implicated in distinct circle drawing tasks. Neuroscience Letters, 2010, 472, 24-28.	1.0	18
20	Human Motor Transfer Is Determined by the Scaling of Size and Accuracy of Movement. Journal of Motor Behavior, 2010, 43, 15-26.	0.5	6
21	Multiple timescales in postural dynamics associated with vision and a secondary task are revealed by wavelet analysis. Experimental Brain Research, 2009, 197, 297-310.	0.7	72
22	The influence of dominant versus non-dominant hand on event and emergent motor timing. Human Movement Science, 2008, 27, 29-52.	0.6	31
23	Distinct Timing Mechanisms Produce Discrete and Continuous Movements. PLoS Computational Biology, 2008, 4, e1000061.	1.5	108
24	Human Trajectory Formation: Taxonomy of Movement Based on Phase Flow Topology., 2008,, 77-92.		10
25	Skill and Physical Activity: A Central Dogma for Kinesiology. Quest, 2007, 59, 163-169.	0.8	3
26	Role of the cerebellum in movements: control of timing or movement transitions?. Experimental Brain Research, 2005, 161, 383-396.	0.7	69
27	Timing Variability in Circle Drawing and Tapping: Probing the Relationship Between Event and Emergent Timing. Journal of Motor Behavior, 2005, 37, 395-403.	0.5	68
28	Timing Precision in Circle Drawing Does Not Depend on Spatial Precision of the Timing Target. Journal of Motor Behavior, 2005, 37, 447-453.	0.5	10
29	Development of functional synergies for speech motor coordination in childhood and adolescence. Developmental Psychobiology, 2004, 45, 22-33.	0.9	284
30	Disrupted Timing of Discontinuous But Not Continuous Movements by Cerebellar Lesions. Science, 2003, 300, 1437-1439.	6.0	427
31	Weber (Slope) Analyses of Timing Variability in Tapping and Drawing Tasks. Journal of Motor Behavior, 2003, 35, 371-381.	0.5	47
32	Dissociation of explicit and implicit timing in repetitive tapping and drawing movements Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 575-588.	0.7	157
33	The Cerebellum and Event Timing. Annals of the New York Academy of Sciences, 2002, 978, 302-317.	1.8	404
34	Does the Cerebellum Preferentially Control Discrete and Not Continuous Movements?. Annals of the New York Academy of Sciences, 2002, 978, 542-544.	1.8	2
35	Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. Journal of Experimental Psychology: Human Perception and Performance, 2002, 28, 575-88.	0.7	122
36	Spatial Conceptual Influences on the Coordination of Bimanual Actions: When a Dual Task Becomes a Single Task. Journal of Motor Behavior, 2001, 33, 103-112.	0.5	127

3

#	Article	IF	CITATIONS
37	Temporal Precision in Tapping and Circle Drawing Movements at Preferred Rates is Not Correlated: Further Evidence Against Timing as a General-Purpose Ability. Journal of Motor Behavior, 2000, 32, 193-199.	0.5	68
38	Correlations for timing consistency among tapping and drawing tasks: Evidence against a single timing process for motor control Journal of Experimental Psychology: Human Perception and Performance, 1999, 25, 1316-1330.	0.7	135
39	Can one explanation serve two laws?. Behavioral and Brain Sciences, 1997, 20, 325-325.	0.4	0
40	Differences in bimanual coordination associated with stuttering. Acta Psychologica, 1997, 96, 229-243.	0.7	53
41	The role of vision in repetitive circle drawing. Acta Psychologica, 1996, 92, 105-118.	0.7	37
42	Spatiotemporal stability and patterning of speech movement sequences. Experimental Brain Research, 1995, 104, 493-501.	0.7	194
43	Motor Performance of Stutterers and Nonstutterers on Timing and Force Control Tasks. Journal of Motor Behavior, 1994, 26, 340-347.	0.5	29
44	Chapter 4 The Role of Motor Development in Infancy Reactions to Mounoud and Bremner. Advances in Psychology, 1993, , 79-88.	0.1	6
45	Evidence of Common Timing Processes in the Control of Manual, Orofacial, and Speech Movements. Journal of Motor Behavior, 1992, 24, 281-287.	0.5	72
46	The visual control of aimed hand movements to stationary and moving targets. Acta Psychologica, 1992, 79, 59-78.	0.7	9
47	Spatial topological constraints in a bimanual task. Acta Psychologica, 1991, 77, 137-151.	0.7	252
48	The Modification of an Already-Programmed Response: A New Interpretation of Henry and Harrison (1961). Journal of Motor Behavior, 1991, 23, 221-223.	0.5	7
49	Chapter 19 Comparative Investigations of Speech and other Neuromotor Systems. Advances in Psychology, 1990, , 575-594.	0.1	5
50	Stimulus-Response Compatibility and the Programming of Motor Activity: Pitfalls and Possible New Directions. Advances in Psychology, 1990, 65, 279-295.	0.1	4
51	Motor Learning in Sign Language Students. Sign Language Studies, 1990, 67, 153-174.	0.1	18
52	Role of temporal and spatial precision in determining the nature of the speed-accuracy trade-off in aimed-hand movements Journal of Experimental Psychology: Human Perception and Performance, 1988, 14, 221-230.	0.7	88
53	The effects of movement distance and movement time on visual feedback processing in aimed hand movements. Acta Psychologica, 1987, 65, 181-191.	0.7	12
54	Kinematic Properties of Rapid Aimed Hand Movements. Journal of Motor Behavior, 1986, 18, 353-372.	0.5	159

#	Article	IF	CITATIONS
55	Attentional and Reaction Time Analysis of Performance: Implications For Research With Mentally Handicapped Individuals. Advances in Psychology, 1986, , 131-153.	0.1	3
56	Reaction Time Methods in the Study of Motor Programming. Journal of Motor Behavior, 1985, 17, 190-218.	0.5	51
57	The Acquisition of Time Properties Associated with a Sequential Motor Skill. Journal of Motor Behavior, 1984, 16, 275-301.	0.5	39
58	Rapid Visual Feedback Processing in Single-Aiming Movements. Journal of Motor Behavior, 1983, 15, 217-236.	0.5	300
59	The Specification of Digit and Duration During Motor Programming. Journal of Motor Behavior, 1982, 14, 57-68.	0.5	55
60	The Effects of Force and Direction Uncertainty on Choice Reaction Time in an Isometric Force Production Task. Journal of Motor Behavior, 1981, 13, 18-32.	0.5	18
61	Effects of a secondary task on the accuracy of single aiming movements Journal of Experimental Psychology: Human Perception and Performance, 1981, 7, 1007-1018.	0.7	59
62	Target-Size Influences on Reaction Time with Movement Time Controlled. Journal of Motor Behavior, 1980, 12, 239-261.	0.5	45
63	Precueing Response Factors in Choice Reaction Time. Journal of Motor Behavior, 1978, 10, 77-79.	0.5	31
64	Feedback in Response Recognition and Production. Journal of Motor Behavior, 1976, 8, 309-312.	0.5	30