List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7214940/publications.pdf Version: 2024-02-01

KEI NAKACAWA

#	Article	IF	CITATIONS
1	ls road-side fishpond water in Bangladesh safe for human use? An assessment using water quality indices. Environmental Challenges, 2022, 6, 100434.	4.2	14
2	Distribution of heavy metals and related health risks through soil ingestion in rural areas of western Japan. Chemosphere, 2022, 290, 133316.	8.2	19
3	Early-stage anaerobic zone formation by organic eluate from wood in soil. Soils and Foundations, 2022, 62, 101109.	3.1	Ο
4	Spatial Distribution and Source Identification of Water Quality Parameters of an Industrial Seaport Riverbank Area in Bangladesh. Water (Switzerland), 2022, 14, 1356.	2.7	10
5	Evaluation on Nitrogen Load Change in Shimabara Peninsula by Factor Decomposition Approach. Journal of Groundwater Hydrology, 2022, 64, 91-100.	0.1	0
6	A Retardation Factor Considering Solute Transfer Between Mobile and Immobile Water in Porous Media. Environmental Modeling and Assessment, 2021, 26, 103-112.	2.2	4
7	Spatiotemporal variation of nitrate concentrations in soil and groundwater of an intensely polluted agricultural area. Scientific Reports, 2021, 11, 2598.	3.3	24
8	Spatial Characteristics of Groundwater Chemistry in Unzen, Nagasaki, Japan. Water (Switzerland), 2021, 13, 426.	2.7	9
9	Interpolation of Nitrate Concentration in Groundwater Using Spatiotemporal Analysis with Land Use Information. Suimon Mizu Shigen Gakkaishi, 2021, 34, 181-191.	0.1	0
10	Suppression of Alkalization in Rainwater Regulating Reservoir by Shading on a Pilot Scale. Water (Switzerland), 2021, 13, 2557.	2.7	0
11	Groundwater nitrogen response to regional land-use management in South Japan. Environmental Earth Sciences, 2021, 80, 1.	2.7	3
12	The Relative Importance of Determinants of the Solar Photovoltaic Industry in China: Analyses by the Diamond Model and the Analytic Hierarchy Process. Energies, 2021, 14, 6600.	3.1	2
13	Using a linear discriminant analysis (LDA)-based nomenclature system and self-organizing maps (SOM) for spatiotemporal assessment of groundwater quality in a coastal aquifer. Journal of Hydrology, 2021, 603, 127082.	5.4	39
14	Effects of the Japanese 2016 Kumamoto Earthquake on Nitrate Content in Groundwater Supply. Minerals (Basel, Switzerland), 2021, 11, 43.	2.0	4
15	RIVER CUTOFF AND SPRING DEPLETION IN MAKI, OZU, KUMAMOTO. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2021, 77, I_115-I_123.	0.1	0
16	Temporal characteristics of groundwater chemistry affected by the 2016 Kumamoto earthquake using self-organizing maps. Journal of Hydrology, 2020, 582, 124519.	5.4	62
17	Describing coseismic groundwater level rise using tank model in volcanic aquifers, Kumamoto, southern Japan. Journal of Hydrology, 2020, 582, 124464.	5.4	29
18	Impact of the Sediment Organic vs. Mineral Content on Distribution of the Per- and Polyfluoroalkyl Substances (PFAS) in Lake Sediment. International Journal of Environmental Research and Public Health, 2020, 17, 5642.	2.6	14

#	Article	IF	CITATIONS
19	INSIDE: An efficient guide for sustainable remediation practice in addressing contaminated soil and groundwater. Science of the Total Environment, 2020, 740, 139879.	8.0	15
20	Use of Heavy Metal Content and Modified Water Quality Index to Assess Groundwater Quality in a Semiarid Area. Water (Switzerland), 2020, 12, 1115.	2.7	48
21	Earthquake effects on artificial groundwater recharge efforts in south Japan. Environmental Earth Sciences, 2020, 79, 1.	2.7	4
22	SEPARATION OF FLUCTUATION COMPONENT OF GROUNDWATER LEVEL USING SPECTRAL ANALYSIS. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2020, 76, I_487-I_493.	0.1	0
23	Analysis of earthquake-induced groundwater level change using self-organizing maps. Environmental Earth Sciences, 2019, 78, 1.	2.7	16
24	Use of sterols to monitor surface water quality change and nitrate pollution source. Ecological Indicators, 2019, 107, 105534.	6.3	15
25	PREVENTION OF ALKALIZATION OF REGULATING POND FOR RAINWATER BY SHADING. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2019, 75, I_393-I_401.	0.1	1
26	Interpolation of Groundwater Nitrate Concentration Using Time-Space Analysis in the Miyakonojo Basin. Suimon Mizu Shigen Gakkaishi, 2019, 32, 23-34.	0.1	1
27	Hydrogeochemical evolution of groundwater in a Quaternary sediment and Cretaceous sandstone unconfined aquifer in Northwestern China. Environmental Earth Sciences, 2018, 77, 1.	2.7	10
28	Social sustainability assessment of groundwater resources: A case study of Hanoi, Vietnam. Ecological Indicators, 2018, 93, 1034-1042.	6.3	30
29	Surface water chemistry and nitrate pollution in Shimabara, Nagasaki, Japan. Environmental Earth Sciences, 2018, 77, 1.	2.7	15
30	AN ANALYSIS OF THE RELATION BETWEEN GROUNDWATER NITRATE CONCENTRATION AND LAND USE IN THE MIYAKONOJO BASIN. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2018, 74, I_87-I_94.	0.1	3
31	REACTIVE TRANSPORT CHARACTERISTICS FOCUSSING ON SALT SORPTION ON VOLCANIC ASH SOIL. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2018, 74, I_95-I_102.	0.1	0
32	RELATIONSHIP BETWEEN OXYGEN CONSUMPTION RATE OF EXTRACTION LIQUID FROM WOOD AND CONCENTRATION OF HYDROGEN SULFIDE – APPLICATION TO SOLID WASTE LANDFILL SITE. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2018, 74, I_189-I_194.	0.1	0
33	HYDROGEN SULFIDE GENERATION SUPPRESION BY VARIOUS TYPES OF OXYGEN ADDITION – APPLICATION TO SOLID WASTE LANDFILL SITE. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2018, 74, I_181-I_188.	0.1	0
34	STUDY ON THE INFLUENCE OF NONUNIFORMITY IN AQUIFER THERMAL ENERGY SYSTEM. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2018, 74, I_337-I_342.	0.1	0
35	MULTI-LEVEL DILUTION TEST AND NUMERICAL EVALUATION OF THE HYDRAULIC PARAMETERS DISTRIBUTION. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2018, 74, I_19-I_24.	0.1	0
36	Reproduction of breakthrough curves for reactive transport experiment in the heterogeneous seepage tank by use of Continuous Time Random Walk (CTRW). Journal of Groundwater Hydrology, 2018, 60, 305-315.	0.1	0

#	Article	IF	CITATIONS
37	Prospects of Groundwater Research in Hydrology and Water Resources Science. Suimon Mizu Shigen Gakkaishi, 2018, 31, 549-553.	0.1	0
38	Classification of groundwater chemistry in Shimabara, using self-organizing maps. Hydrology Research, 2017, 48, 840-850.	2.7	25
39	Recovery of groundwater in the Sanriku region contaminated by the tsunami inundation from the 2011 Tohoku earthquake. Environmental Earth Sciences, 2017, 76, 1.	2.7	5
40	On the use of coprostanol to identify source of nitrate pollution in groundwater. Journal of Hydrology, 2017, 550, 663-668.	5.4	39
41	Hydrogeological observations related to the decisions of groundwater management. Journal of Groundwater Hydrology, 2017, 59, 1-2.	0.1	0
42	Sustainability Assessment of Groundwater Resources in Hanoi, Vietnam from a Social Perspective. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2017, 73, I_17-I_24.	0.1	0
43	Modeling of Salt Sorption in Volcanic Ash Soil. Communications in Soil Science and Plant Analysis, 2017, 48, 2594-2600.	1.4	1
44	HYDROGEOCHEMICAL ASSESSMENT OF GROUNDWATER QUALITY IN SHIMABARA, NAGASAKI, JAPAN. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2017, 73, I_73-I_78.	0.1	1
45	STUDY ON STATISTICAL PROPERTIES OF DARCY VELOCITY DISTRIBUTION AND FORM OF WATER PATH IN NON-UNIFORM FIELD. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2017, 73, I_49-I_54.	0.1	0
46	DETECTION OF IMPERMEABLE STRUCTURE IN SUBSURFACE USING SURFACE THERMAL IMAGES. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2017, 73, I_1-I_8.	0.1	0
47	Grouping by Visual Appearance of Construction and Demolition Waste for Sorting Time Reduction with the Aim of Removing Asbestos-Containing Materials. International Journal of Waste Resources, 2017, 07, .	0.2	0
48	ANALYSIS ON THE QUESTIONNAIRE FOR LOCAL RESIDENTS ABOUT THE ENVIRONMENTAL POLICY BY USING SELF-ORGANIZING MAP. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2017, 73, I_131-I_140.	0.1	0
49	STUDY ON QUANTITATIVE EVALUATION OF MACROSCOPIC DISPERSIVITY IN UNSATURATED/ NONUNIFORM INFILTRATION FIELD. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2016, 72, I_277-I_282.	0.1	0
50	Groundwater geochemistry of a nitrate-contaminated agricultural site. Environmental Earth Sciences, 2016, 75, 1.	2.7	19
51	Decomposition approach of the nitrogen generation process: empirical study on the Shimabara Peninsula in Japan. Environmental Science and Pollution Research, 2016, 23, 23249-23261.	5.3	5
52	CLASSIFICATION CHARACTERISTICS OF MULTIVARIATE ANALYSES FOR GROUNDWATER CHEMISTRY —CASE STUDY ON SHIMABARA CITY—. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2016, 72, I_127-I_135.	0.1	3
53	EFFECTS OF PLANT WATER UPTAKE ON THE DISTRIBUTION OF SOIL CHEMICAL COMPONENT. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2016, 72, I_259-I_264.	0.1	0
54	Spatial trends of nitrate pollution and groundwater chemistry in Shimabara, Nagasaki, Japan. Environmental Earth Sciences, 2016, 75, 1.	2.7	53

#	Article	IF	CITATIONS
55	Potential map accuracy of groundwater nitrate load from agricultural activities in Shimabara City, Nagasaki Prefecture, Japan. Journal of Groundwater Hydrology, 2015, 57, 483-493.	0.1	9
56	ANALYSIS ON THE QUESTIONNAIRE FOR UNIVERSITY STUDENTS ABOUT THE TERMS OF ENVIRONMENTAL SCIENCES BY USING SELF-ORGANIZING MAP. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2015, 71, II_423-II_431.	0.1	0
57	STUDY ON ADVECTION DISPERSION PHENOMENA IN THE UNSATURATED VERTICAL INFILTRATION FIELD. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2015, 71, I_223-I_228.	0.1	0
58	ELECTRO-KINETIC REMEDIATION MODEL FOR CONTAMINATED SOIL AND GROUNDWATER. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2015, 71, I_235-I_240.	0.1	1
59	Evaluation of Phosphate Removal Using Purification Plant Sludge and Simulation of Concentration Change in an Adjustment Reservoir in Isahaya Reclaimed Land. Suimon Mizu Shigen Gakkaishi, 2014, 27, 105-115.	0.1	0
60	NUMERICAL EVALUATION OF NITRATE POLLUTION AND REMEDIATION. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2014, 70, I_1111-I_1116.	0.1	1
61	Groundwater, river water, and soil in the Minamisanriku town affected by the 2011 tsunami. Journal of Groundwater Hydrology, 2014, 56, 107-119.	0.1	2
62	Difference in Density of Fiber Bundles Exposed on Surface of Asbestos-Containing Materialswith the Aim to Reduce Time Necessary for Visual Observation. International Journal of Environment and Resource, 2014, 3, 46.	0.1	0
63	Classic ^ ^amp; contemporary papers of groundwater science ï¼^3) How to evaluate appropriate dispersivity at the field scale. Journal of Groundwater Hydrology, 2014, 56, 67-71.	0.1	0
64	Influence of oxygen flow rate and compost addition on reduction of organic matter in aerated waste layer containing mainly incineration residue. Journal of Environmental Sciences, 2013, 25, 53-58.	6.1	0
65	THE METHOD TO DETERMINE SOLUTE DISPERSIVITY FROM THE THERMAL IMAGE OF THE PLUME. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2013, 69, I_577-I_582.	0.1	0
66	STUDY ON RAINFALL INFILTRATION AND ADVECTION DISPERSION PHENOMENA IN THE MOUNTAINSIDE BY USING 3D NUMERICAL MODEL. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2013, 69, I_571-I_576.	0.1	0
67	Effect of Tsunami induced by the 2011 off the Pacific coast of Tohoku Earthquake on groundwater. Journal of Groundwater Hydrology, 2013, 55, 21-28.	0.1	4
68	EXPERIMENTAL AND NUMERICAL STUDY ON RAINFALL INFILTRATION AND SOLUTE TRANSPORT IN MODEL SLOPE. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2012, 68, I_535-I_540.	0.1	0
69	HEAVY METAL CONCENTRATION OF SOIL IN THE REGIONAL CITY PLAYGROUNDS. Journal of Japan Society of Civil Engineers Ser G (Environmental Research), 2012, 68, 189-194.	0.1	0
70	EVALUATION OF DISPERSIVITY UNDER UNSATURATED CONDITION BY NUMERICAL SIMULATION OF TRACER TEST IN THE SEEPAGE TANK. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2012, 68, I_553-I_558.	0.1	0
71	On the importance of hysteresis and heterogeneity in the numerical simulation of unsaturated flow. Hydrological Research Letters, 2012, 6, 59-64.	0.5	5
72	NUMERICAL STUDY ON SEAWATER INTRUSION IN NON-UNIFORM AQUIFER. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2011, 67, I_595-I_600.	0.1	0

#	Article	IF	CITATIONS
73	NUMERICAL STUDY ON GROUNDWATER POLLUTION MECHANISM IN THE TWO SHIRASU PLATEAUS IN THE SAME CATCHMENT AREA. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2011, 67, I_583-I_588.	0.1	0
74	FRESH AND SALTWATER MOVEMENT AFTER INSTALLATION OF CUT-OFF WALL IN CONFINED AQUIFER. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2011, 67, I_601-I_606.	0.1	2
75	Effects of Recharge Wells and Flow Barriers on Seawater Intrusion. Ground Water, 2011, 49, 239-249.	1.3	127
76	Modeling Solute Transport in Volcanic Ash Soils with Cation Exchange and Anion Retardation. Environmental Modeling and Assessment, 2011, 16, 335-342.	2.2	2
77	Numerical study on quantitative evaluation of macroscopic disparsivity by using stochastic fractal model. Journal of Groundwater Hydrology, 2011, 53, 343-355.	0.1	5
78	Modelling reactive solute transport from groundwater to soil surface under evaporation. Hydrological Processes, 2010, 24, 608-617.	2.6	10
79	Laboratory-scale saltwater behavior due to subsurface cutoff wall. Journal of Hydrology, 2009, 377, 227-236.	5.4	103
80	Modeling the water budget in a deep caldera lake and its hydrologic assessment: Lake Ikeda, Japan. Agricultural Water Management, 2009, 96, 35-42.	5.6	13
81	Soil heterogeneity effects on acid flushing of lead-contaminated soil. Environmental Modeling and Assessment, 2008, 13, 121-134.	2.2	4
82	LABORATORY EXPERIMENT ON REACTIVE TRANSPORT IN PHYSICALLY AND CHEMICALLY HETEROGENEOUS FIELD. Proceedings of Hydraulic Engineering, 2008, 52, 397-402.	0.0	0
83	Microscopic and macroscopic dispersions in convection-dispersion proc esses. Journal of Groundwater Hydrology, 2008, 50, 179-186.	0.1	1
84	WATER INFILTRATION ANALYSIS IN THE UNSATURATED-HETEROGENEOUS FIELD. Doboku Gakkai Ronbunshuu B, 2008, 64, 30-40.	0.1	1
85	WATER INFILTRATION INVESTIGATIONS IN UNSATURATED-HETEROGENEOUS FIELD BY TDR METHOD USING PRINTED CIRCUIT BOARD PROBE AND BY IMAGE ANALYSIS. Proceedings of Hydraulic Engineering, 2007, 51, 439-444.	0.0	0
86	Groundwater Simulation using Spreadsheets. Journal of Groundwater Hydrology, 2007, 49, 49-57.	0.1	1
87	APPARENT DISPERSIVITY OF PHYSICALLY-CHEMICALLY HETEROGENEOUS POROUS MEDIA. Proceedings of Hydraulic Engineering, 2006, 50, 229-234.	0.0	0
88	Observations and modelling of seawater intrusion for a small limestone island aquifer. Hydrological Processes, 2005, 19, 3897-3909.	2.6	12
89	Saltwater intrusion in coastal aquifer ??? comparison between the CIP and MOC simulation technique. Environmental Modeling and Assessment, 2005, 10, 323-329.	2.2	10
90	Evaluation of the Heterogeneous Hydrogeological Structure. , 2000, , 387-392.		0

#	Article	IF	CITATIONS
91	Numerical Study on Saltwater Instrusion in a Heterogeneous Stratified Aquifer. Journal of the Faculty of Agriculture, Kyushu University, 2000, 45, 317-323.	0.2	4