
Anna Grazia Ficca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7214861/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Health-Promoting Components in Fermented Foods: An Up-to-Date Systematic Review. Nutrients, 2019, 11, 1189.	4.1	209
2	Metabolic engineering of Pseudomonas fluorescens for the production of vanillin from ferulic acid. Journal of Biotechnology, 2011, 156, 309-316.	3.8	108
3	Foliar Application of Vegetal-Derived Bioactive Compounds Stimulates the Growth of Beneficial Bacteria and Enhances Microbiome Biodiversity in Lettuce. Frontiers in Plant Science, 2019, 10, 60.	3.6	80
4	Growth-promoting bacteria and arbuscular mycorrhizal fungi differentially benefit tomato and corn depending upon the supplied form of phosphorus. Mycorrhiza, 2020, 30, 133-147.	2.8	66
5	Immunopurification of T-cells from sea bass Dicentrarchus labrax (L.). Fish and Shellfish Immunology, 2000, 10, 329-341.	3.6	61
6	Maximizing the Efficiency of Vanillin Production by Biocatalyst Enhancement and Process Optimization. Frontiers in Bioengineering and Biotechnology, 2019, 7, 279.	4.1	53
7	Regulation of ferulic catabolic genes in Pseudomonas fluorescens BF13: involvement of a MarR family regulator. Applied Microbiology and Biotechnology, 2008, 80, 475-483.	3.6	41
8	A Poplar Plastocyanin Mutant Suitable for Adsorption onto Gold Surface via Disulfide Bridge. Archives of Biochemistry and Biophysics, 2002, 399, 81-88.	3.0	40
9	Genome Sequencing of Pantoea agglomerans C1 Provides Insights into Molecular and Genetic Mechanisms of Plant Growth-Promotion and Tolerance to Heavy Metals. Microorganisms, 2020, 8, 153.	3.6	37
10	Metabolites Secreted by a Plant-Growth-Promoting Pantoea agglomerans Strain Improved Rooting of Pyrus communis L. cv Dar Gazi Cuttings. Frontiers in Microbiology, 2020, 11, 539359.	3.5	26
11	A Genetic and Metabolomic Perspective on the Production of Indole-3-Acetic Acid by Pantoea agglomerans and Use of Their Metabolites as Biostimulants in Plant Nurseries. Frontiers in Microbiology, 2020, 11, 1475.	3.5	23
12	Antigen-dependent T lymphocytes (TcRβ+) are primarily differentiated in the thymus rather than in other lymphoid tissues in sea bass (Dicentrarchus labrax, L.). Fish and Shellfish Immunology, 2011, 30, 773-782.	3.6	20
13	The humanβ2-adrenergic receptor expressed inSchizosaccharomyces pomberetains its pharmacological properties. FEBS Letters, 1995, 377, 140-144.	2.8	17
14	Effects of a protein hydrolysate-based biostimulant and two micronutrient based fertilizers on plant growth and epiphytic bacterial population of lettuce. Acta Horticulturae, 2016, , 43-48.	0.2	14
15	cDNA cloning and heterologous expression of a wheat proteinase inhibitor of subtilisin and chymotrypsin (WSCI) that interferes with digestive enzymes of insect pests. Biological Chemistry, 2005, 386, 383-389.	2.5	12
16	Wheat Subtilisin/Chymotrypsin Inhibitor (WSCI) as a scaffold for novel serine protease inhibitors with a given specificity. Molecular BioSystems, 2012, 8, 3335.	2.9	12
17	Genome Sequence of the Plant Growth-Promoting Rhizobacterium Pantoea agglomerans C1. Microbiology Resource Announcements, 2019, 8, .	0.6	12
18	WCI, a novel wheat chymotrypsin inhibitor: purification, primary structure, inhibitory properties and heterologous expression. Planta, 2011, 234, 723-735.	3.2	11

#	Article	IF	CITATIONS
19	Enhanced cytotoxic activity of a bifunctional chimeric protein containing a type 1 ribosome-inactivating protein and a serine protease inhibitor. Biochimie, 2012, 94, 1990-1996.	2.6	11
20	Purified Saccharomyces cerevisiae RNA polymerase II interacts homologously with two different promoters as revealed by P1 endonuclease analysis. Molecular Genetics and Genomics, 1986, 204, 249-257.	2.4	10
21	Functional relationship among TATA sequences, gene induction and transcription initiation in the ?-galactosidase, LAC4, gene from Kluyveromyces lactis. Current Genetics, 1989, 15, 261-269.	1.7	6
22	Redesigning the reactive site loop of the wheat subtilisin/chymotrypsin inhibitor (WSCI) by site-directed mutagenesis. A protein–protein interaction study by affinity chromatography and molecular modeling. Biochimie, 2009, 91, 1112-1122.	2.6	3
23	Nucleoli, rRNA Genes and ITS Region in Posidonia Oceanica (L.) Delile. Hereditas, 2004, 129, 59-65.	1.4	2