Vardis Ntoukakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7214218/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of putative effectors of different <i>Xylella fastidiosa</i> strains triggers cell deathâ€like responses in various <i>Nicotiana</i> model plants. Molecular Plant Pathology, 2022, 23, 148-156.	4.2	7
2	Mediator Subunits MED16, MED14, and MED2 Are Required for Activation of ABRE-Dependent Transcription in Arabidopsis. Frontiers in Plant Science, 2021, 12, 649720.	3.6	5
3	The bacterial biocontrol agent <i>Paenibacillus alvei</i> K165 confers inherited resistance to <i>Verticillium dahliae</i> . Journal of Experimental Botany, 2021, 72, 4565-4576.	4.8	5
4	Immunity onset alters plant chromatin and utilizes EDA16 to regulate oxidative homeostasis. PLoS Pathogens, 2021, 17, e1009572.	4.7	10
5	Clavibacter michiganensis Downregulates Photosynthesis and Modifies Monolignols Metabolism Revealing a Crosstalk with Tomato Immune Responses. International Journal of Molecular Sciences, 2021, 22, 8442.	4.1	3
6	Activation loop phosphorylation of a non-RD receptor kinase initiates plant innate immune signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
7	GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the 5′ and 3′ ends of its target genes. Nucleic Acids Research, 2020, 48, 5953-5966.	14.5	44
8	Novel markers for high-throughput protoplast-based analyses of phytohormone signaling. PLoS ONE, 2020, 15, e0234154.	2.5	10
9	Plant–microbe interactions: tipping the balance. Journal of Experimental Botany, 2019, 70, 4583-4585.	4.8	2
10	An Arabidopsis thaliana leucine-rich repeat protein harbors an adenylyl cyclase catalytic center and affects responses to pathogens. Journal of Plant Physiology, 2019, 232, 12-22.	3.5	56
11	<scp>JAZ</scp> 2 controls stomata dynamics during bacterial invasion. New Phytologist, 2017, 213, 1378-1392.	7.3	124
12	The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1. PLoS Pathogens, 2016, 12, e1005811.	4.7	113
13	The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by <i>Pseudomonas</i> Type III Effectors. Plant Physiology, 2016, 172, 1941-1958.	4.8	94
14	Parasitic plants—A CuRe for what ails thee. Science, 2016, 353, 442-443.	12.6	7
15	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	7.3	263
16	Cell Differentiation and Development in <i>Arabidopsis</i> Are Associated with Changes in Histone Dynamics at the Single-Cell Level Â. Plant Cell, 2015, 26, 4821-4833.	6.6	66
17	Improving crop disease resistance: lessons from research on Arabidopsis and tomato. Frontiers in Plant Science, 2014, 5, 671.	3.6	77
18	Identification of Post-translational Modifications of Plant Protein Complexes. Journal of Visualized Experiments, 2014, , e51095.	0.3	5

VARDIS NTOUKAKIS

#	Article	IF	CITATIONS
19	A Bacterial Tyrosine Phosphatase Inhibits Plant Pattern Recognition Receptor Activation. Science, 2014, 343, 1509-1512.	12.6	152
20	Negative control of <scp>BAK</scp> 1 by protein phosphatase 2A during plant innate immunity. EMBO Journal, 2014, 33, 2069-2079.	7.8	138
21	Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Molecular Cell, 2014, 54, 43-55.	9.7	744
22	The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition. Current Opinion in Plant Biology, 2014, 20, 69-74.	7.1	68
23	Editorial: Mechanisms regulating immunity in plants. Frontiers in Plant Science, 2013, 4, 64.	3.6	10
24	The Tomato Prf Complex Is a Molecular Trap for Bacterial Effectors Based on Pto Transphosphorylation. PLoS Pathogens, 2013, 9, e1003123.	4.7	49
25	Cautionary Notes on the Use of C-Terminal BAK1 Fusion Proteins for Functional Studies. Plant Cell, 2011, 23, 3871-3878.	6.6	60
26	Phosphorylation-Dependent Differential Regulation of Plant Growth, Cell Death, and Innate Immunity by the Regulatory Receptor-Like Kinase BAK1. PLoS Genetics, 2011, 7, e1002046.	3.5	439
27	Prf immune complexes of tomato are oligomeric and contain multiple Ptoâ€like kinases that diversify effector recognition. Plant Journal, 2010, 61, 507-518.	5.7	116
28	Host Inhibition of a Bacterial Virulence Effector Triggers Immunity to Infection. Science, 2009, 324, 784-787.	12.6	120
29	The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis. Plant Signaling and Behavior, 2009, 4, 539-541.	2.4	92
30	AvrPtoB Targets the LysM Receptor Kinase CERK1 to Promote Bacterial Virulence on Plants. Current Biology, 2009, 19, 423-429.	3.9	419
31	Mechanisms regulating immunity in plants. Frontiers Research Topics, 0, , .	0.2	1