Vardis Ntoukakis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7214218/publications.pdf

Version: 2024-02-01

394421 454955 3,313 31 19 30 citations g-index h-index papers 34 34 34 4366 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Molecular Cell, 2014, 54, 43-55.	9.7	744
2	Phosphorylation-Dependent Differential Regulation of Plant Growth, Cell Death, and Innate Immunity by the Regulatory Receptor-Like Kinase BAK1. PLoS Genetics, 2011, 7, e1002046.	3 . 5	439
3	AvrPtoB Targets the LysM Receptor Kinase CERK1 to Promote Bacterial Virulence on Plants. Current Biology, 2009, 19, 423-429.	3.9	419
4	Standards for plant synthetic biology: a common syntax for exchange of <scp>DNA</scp> parts. New Phytologist, 2015, 208, 13-19.	7.3	263
5	A Bacterial Tyrosine Phosphatase Inhibits Plant Pattern Recognition Receptor Activation. Science, 2014, 343, 1509-1512.	12.6	152
6	Negative control of <scp>BAK</scp> 1 by protein phosphatase 2A during plant innate immunity. EMBO Journal, 2014, 33, 2069-2079.	7.8	138
7	<scp>JAZ</scp> 2 controls stomata dynamics during bacterial invasion. New Phytologist, 2017, 213, 1378-1392.	7.3	124
8	Host Inhibition of a Bacterial Virulence Effector Triggers Immunity to Infection. Science, 2009, 324, 784-787.	12.6	120
9	Prf immune complexes of tomato are oligomeric and contain multiple Ptoâ€like kinases that diversify effector recognition. Plant Journal, 2010, 61, 507-518.	5.7	116
10	The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1. PLoS Pathogens, 2016, 12, e1005811.	4.7	113
11	The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by <i>Pseudomonas</i> Type III Effectors. Plant Physiology, 2016, 172, 1941-1958.	4.8	94
12	The LysM receptor kinase CERK1 mediates bacterial perception in Arabidopsis. Plant Signaling and Behavior, 2009, 4, 539-541.	2.4	92
13	Improving crop disease resistance: lessons from research on Arabidopsis and tomato. Frontiers in Plant Science, 2014, 5, 671.	3 . 6	77
14	The changing of the guard: the Pto/Prf receptor complex of tomato and pathogen recognition. Current Opinion in Plant Biology, 2014, 20, 69-74.	7.1	68
15	Cell Differentiation and Development in <i>Arabidopsis</i> Are Associated with Changes in Histone Dynamics at the Single-Cell Level Â. Plant Cell, 2015, 26, 4821-4833.	6.6	66
16	Cautionary Notes on the Use of C-Terminal BAK1 Fusion Proteins for Functional Studies. Plant Cell, 2011, 23, 3871-3878.	6.6	60
17	An Arabidopsis thaliana leucine-rich repeat protein harbors an adenylyl cyclase catalytic center and affects responses to pathogens. Journal of Plant Physiology, 2019, 232, 12-22.	3.5	56
18	The Tomato Prf Complex Is a Molecular Trap for Bacterial Effectors Based on Pto Transphosphorylation. PLoS Pathogens, 2013, 9, e1003123.	4.7	49

#	Article	IF	CITATIONS
19	GCN5 modulates salicylic acid homeostasis by regulating H3K14ac levels at the $5\hat{a} \in \mathbb{Z}^2$ and $3\hat{a} \in \mathbb{Z}^2$ ends of its target genes. Nucleic Acids Research, 2020, 48, 5953-5966.	14.5	44
20	Activation loop phosphorylation of a non-RD receptor kinase initiates plant innate immune signaling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	12
21	Editorial: Mechanisms regulating immunity in plants. Frontiers in Plant Science, 2013, 4, 64.	3.6	10
22	Novel markers for high-throughput protoplast-based analyses of phytohormone signaling. PLoS ONE, 2020, 15, e0234154.	2.5	10
23	Immunity onset alters plant chromatin and utilizes EDA16 to regulate oxidative homeostasis. PLoS Pathogens, 2021, 17, e1009572.	4.7	10
24	Parasitic plantsâ€"A CuRe for what ails thee. Science, 2016, 353, 442-443.	12.6	7
25	Expression of putative effectors of different <i>Xylella fastidiosa</i> strains triggers cell deathâ€like responses in various <i>Nicotiana</i> model plants. Molecular Plant Pathology, 2022, 23, 148-156.	4.2	7
26	Identification of Post-translational Modifications of Plant Protein Complexes. Journal of Visualized Experiments, 2014, , e51095.	0.3	5
27	Mediator Subunits MED16, MED14, and MED2 Are Required for Activation of ABRE-Dependent Transcription in Arabidopsis. Frontiers in Plant Science, 2021, 12, 649720.	3.6	5
28	The bacterial biocontrol agent <i>Paenibacillus alvei</i> K165 confers inherited resistance to <i>Verticillium dahliae</i> Journal of Experimental Botany, 2021, 72, 4565-4576.	4.8	5
29	Clavibacter michiganensis Downregulates Photosynthesis and Modifies Monolignols Metabolism Revealing a Crosstalk with Tomato Immune Responses. International Journal of Molecular Sciences, 2021, 22, 8442.	4.1	3
30	Plant–microbe interactions: tipping the balance. Journal of Experimental Botany, 2019, 70, 4583-4585.	4.8	2
31	Mechanisms regulating immunity in plants. Frontiers Research Topics, 0, , .	0.2	1