Mariana Araújo Vieira do Carmo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7214074/publications.pdf

Version: 2024-02-01

35 papers

2,000 citations

304743 22 h-index 35 g-index

35 all docs 35 docs citations

35 times ranked 2350 citing authors

#	Article	IF	CITATIONS
1	Observations on the use of statistical methods in Food Science and Technology. Food Research International, 2014, 55, 137-149.	6.2	392
2	Chemistry and Biological Activities of Processed <i>Camellia sinensis </i> Review. Comprehensive Reviews in Food Science and Food Safety, 2019, 18, 1474-1495.	11.7	283
3	High-throughput assay comparison and standardization for metal chelating capacity screening: A proposal and application. Food Chemistry, 2017, 214, 515-522.	8.2	146
4	Comparison between Folinâ€Ciocalteu and Prussian Blue Assays to Estimate The Total Phenolic Content of Juices and Teas Using 96â€Well Microplates. Journal of Food Science, 2015, 80, C2397-403.	3.1	132
5	Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities. Food and Chemical Toxicology, 2018, 113, 187-197.	3.6	92
6	Untargeted and targeted metabolomics reveal the chemical characteristic of pu-erh tea (Camellia) Tj ETQq0 0 0 rg	şBŢ /Overlo	ock 10 Tf 50
7	Chemical study, antioxidant, anti-hypertensive, and cytotoxic/cytoprotective activities of Centaurea cyanus L. petals aqueous extract. Food and Chemical Toxicology, 2018, 118, 439-453.	3.6	68
8	In vitro antioxidant and antihypertensive compounds from camu-camu (Myrciaria dubia McVaugh,) Tj ETQq0 0 0 r 479-490.	gBT /Overl 3.6	lock 10 Tf 50 64
9	Effects of epigallocatechin gallate, epigallocatechin and epicatechin gallate on the chemical and cell-based antioxidant activity, sensory properties, and cytotoxicity of a catechin-free model beverage. Food Chemistry, 2021, 339, 128060.	8.2	64
10	Optimized Camellia sinensis var. sinensis, llex paraguariensis, and Aspalathus linearis blend presents high antioxidant and antiproliferative activities in a beverage model. Food Chemistry, 2018, 254, 348-358.	8.2	58
11	Camu-camu seed (Myrciaria dubia) – From side stream to an antioxidant, antihyperglycemic, antiproliferative, antimicrobial, antihemolytic, anti-inflammatory, and antihypertensive ingredient. Food Chemistry, 2020, 310, 125909.	8.2	56
12	Multivariate effects of Chinese keemun black tea grades (Camellia sinensis var. sinensis) on the phenolic composition, antioxidant, antihemolytic and cytotoxic/cytoprotection activities. Food Research International, 2019, 125, 108516.	6.2	52
13	Analytical Strategy Coupled with Response Surface Methodology To Maximize the Extraction of Antioxidants from Ternary Mixtures of Green, Yellow, and Red Teas (<i>Camellia sinensis</i> Var.) Tj ETQq1 1 0.78	34 5. ⊉4 rgB1	「 ≴⊡ verlock 1
14	Polyphenols of jabuticaba [Myrciaria jaboticaba (Vell.) O.Berg] seeds incorporated in a yogurt model exert antioxidant activity and modulate gut microbiota of 1,2-dimethylhydrazine-induced colon cancer in rats. Food Chemistry, 2021, 334, 127565.	8.2	50
15	From byproduct to a functional ingredient: Camu-camu (Myrciaria dubia) seed extract as an antioxidant agent in a yogurt model. Journal of Dairy Science, 2020, 103, 1131-1140.	3.4	44
16	Red Chicory (<i>Cichorium intybus</i>) Extract Rich in Anthocyanins: Chemical Stability, Antioxidant Activity, and Antiproliferative Activity <i>In Vitro</i> . Journal of Food Science, 2019, 84, 990-1001.	3.1	39
17	Response surface optimization of phenolic compounds from jabuticaba (Myrciaria cauliflora [Mart.]) Tj ETQq1 1 Cassessments. Food and Chemical Toxicology, 2020, 142, 111439.	0.784314 r _j 3.6	gBT /Overloo 32
18	Antioxidants-rich ice cream containing herbal extracts and fructooligossaccharides: manufacture, functional and sensory properties. Food Chemistry, 2019, 298, 125098.	8.2	29

#	Article	IF	CITATIONS
19	Effects of microwave heating on the chemical composition and bioactivity of orange juice-milk beverages. Food Chemistry, 2021, 345, 128746.	8.2	28
20	Black tea kombucha: Physicochemical, microbiological and comprehensive phenolic profile changes during fermentation, and antimalarial activity. Food Chemistry, 2022, 384, 132515.	8.2	27
21	Optimizing the extraction of bioactive compounds from pu-erh tea (Camellia sinensis var. assamica) and evaluation of antioxidant, cytotoxic, antimicrobial, antihemolytic, and inhibition of $\hat{l}\pm$ -amylase and $\hat{l}\pm$ -glucosidase activities. Food Research International, 2020, 137, 109430.	6.2	26
22	Hydroalcoholic Myrciaria dubia (camu-camu) seed extracts prevent chromosome damage and act as antioxidant and cytotoxic agents. Food Research International, 2019, 125, 108551.	6.2	24
23	A new analytical concept based on chemistry and toxicology for herbal extracts analysis: From phenolic composition to bioactivity. Food Research International, 2020, 132, 109090.	6.2	23
24	From the forest to the plate $\hat{a} \in \text{``Hemicelluloses}$, galactoglucomannan, glucuronoxylan, and phenolic-rich extracts from unconventional sources as functional food ingredients. Food Chemistry, 2022, 381, 132284.	8.2	19
25	Extraction optimization of bioactive compounds from ora-pro-nobis (Pereskia aculeata Miller) leaves and their in vitro antioxidant and antihemolytic activities. Food Chemistry, 2021, 361, 130078.	8.2	14
26	Flaxleaf Fleabane Leaves (<i>Conyza bonariensis</i>), A New Functional Nonconventional Edible Plant?. Journal of Food Science, 2019, 84, 3473-3482.	3.1	13
27	Ellagitannins from jabuticaba (Myrciaria jaboticaba) seeds attenuated inflammation, oxidative stress, aberrant crypt foci, and modulated gut microbiota in rats with 1,2 dimethyl hydrazine-induced colon carcinogenesis. Food and Chemical Toxicology, 2021, 154, 112287.	3.6	13
28	Camu-camu (Myrciaria dubia) seeds as a novel source of bioactive compounds with promising antimalarial and antischistosomicidal properties. Food Research International, 2020, 136, 109334.	6.2	13
29	Metabolomics, sensory evaluation, and enzymatic hydrolysis reveal the effect of storage on the critical astringency-active components of crude Pu-erh tea. Journal of Food Composition and Analysis, 2022, 107, 104387.	3.9	13
30	Effect of <i>Pereskia aculeata </i> Mill. in vitro and in overweight humans: A randomized controlled trial. Journal of Food Biochemistry, 2019, 43, e12903.	2.9	12
31	Antioxidant/pro-oxidant and antiproliferative activities of phenolic-rich foods and extracts: A cell-based point of view. Advances in Food and Nutrition Research, 2021, 98, 253-280.	3.0	12
32	Response surface optimization of phenolic compounds extraction from camuâ€camu (<i>Myrciaria) Tj ETQq0 0 0 2358-2367.</i>	0 rgBT /Ov 3.1	verlock 10 Tf 5 11
33	<i>Sclerotinia Sclerotiorum</i> (White Mold): Cytotoxic, Mutagenic, and Antimalarial Effects <i>In Vivo</i> and <i>In Vitro</i> . Journal of Food Science, 2019, 84, 3866-3875.	3.1	10
34	Purple tea (Camellia sinensis var. assamica) leaves as a potential functional ingredient: From extraction of phenolic compounds to cell-based antioxidant/biological activities. Food and Chemical Toxicology, 2022, 159, 112668.	3.6	9
35	Selina-1,3,7(11)-trien-8-one and Oxidoselina-1,3,7(11)-trien-8-one from Eugenia uniflora Leaf Essential Oil and Their Cytotoxic Effects on Human Cell Lines. Molecules, 2021, 26, 740.	3.8	4