Tsukasa Torimoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7214017/publications.pdf

Version: 2024-02-01

237 papers

10,278 citations

52 h-index ³⁹⁶³⁸
94
g-index

243 all docs 243 docs citations

times ranked

243

9540 citing authors

#	Article	IF	CITATIONS
1	New Frontiers in Materials Science Opened by Ionic Liquids. Advanced Materials, 2010, 22, 1196-1221.	11.1	803
2	Sputter deposition onto ionic liquids: Simple and clean synthesis of highly dispersed ultrafine metal nanoparticles. Applied Physics Letters, 2006, 89, 243117.	1.5	352
3	Facile Synthesis of ZnSâ^'AgInS ₂ Solid Solution Nanoparticles for a Color-Adjustable Luminophore. Journal of the American Chemical Society, 2007, 129, 12388-12389.	6.6	338
4	Ligand-Free Platinum Nanoparticles Encapsulated in a Hollow Porous Carbon Shell as a Highly Active Heterogeneous Hydrogenation Catalyst. Angewandte Chemie - International Edition, 2006, 45, 7063-7066.	7.2	319
5	Effect of Inert Supports for Titanium Dioxide Loading on Enhancement of Photodecomposition Rate of Gaseous Propionaldehyde. The Journal of Physical Chemistry, 1995, 99, 9986-9991.	2.9	281
6	Effects of Adsorbents Used as Supports for Titanium Dioxide Loading on Photocatalytic Degradation of Propyzamide. Environmental Science & Environmenta	4.6	275
7	Quantitative analysis of defective sites in titanium(IV) oxide photocatalyst powders. Physical Chemistry Chemical Physics, 2003, 5, 778-783.	1.3	217
8	Single-step synthesis of gold–silver alloy nanoparticles in ionic liquids by a sputter deposition technique. Chemical Communications, 2008, , 691-693.	2.2	198
9	Titanium dioxide/adsorbent hybrid photocatalysts for photodestruction of organic substances of dilute concentrations. Catalysis Today, 2000, 58, 133-140.	2.2	190
10	Effect of activated carbon content in TiO2-loaded activated carbon on photodegradation behaviors of dichloromethane. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 103, 153-157.	2.0	184
11	Plasmon-Enhanced Photocatalytic Activity of Cadmium Sulfide Nanoparticle Immobilized on Silica-Coated Gold Particles. Journal of Physical Chemistry Letters, 2011, 2, 2057-2062.	2.1	183
12	Observation of Ionic Liquid by Scanning Electron Microscope. Chemistry Letters, 2006, 35, 600-601.	0.7	170
13	Photocatalytic reduction of CO2 using surface-modified CdS photocatalysts in organic solvents. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 113, 93-97.	2.0	152
14	Remarkable photoluminescence enhancement of ZnS–AgInS2 solid solution nanoparticles by post-synthesis treatment. Chemical Communications, 2010, 46, 2082.	2.2	149
15	CdS Quantum Dots Sensitized TiO2Sandwich Type Photoelectrochemical Solar Cells. Chemistry Letters, 2007, 36, 88-89.	0.7	147
16	Room-Temperature Ionic Liquid. A New Medium for Material Production and Analyses under Vacuum Conditions. Journal of Physical Chemistry Letters, 2010, 1, 3177-3188.	2.1	144
17	Preparation and photoelectrochemical properties of densely immobilized Cu2ZnSnS4 nanoparticle films. Journal of Materials Chemistry, 2010, 20, 5319.	6.7	138
18	Tunable photoluminescence from the visible to near-infrared wavelength region of non-stoichiometric AgInS2 nanoparticles. Journal of Materials Chemistry, 2012, 22, 12851.	6.7	135

#	Article	IF	CITATIONS
19	Fabrication of CdS Nanoparticle Chains along DNA Double Strands. Journal of Physical Chemistry B, 1999, 103, 8799-8803.	1.2	134
20	Discrimination of the active crystalline phases in anatase–rutile mixed titanium(iv) oxide photocatalysts through action spectrum analyses. Physical Chemistry Chemical Physics, 2002, 4, 5910-5914.	1.3	129
21	Controlling the Electronic Energy Structure of ZnS–AgInS ₂ Solid Solution Nanocrystals for Photoluminescence and Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2015, 119, 24740-24749.	1.5	122
22	Development of new techniques for scanning electron microscope observation using ionic liquid. Electrochimica Acta, 2008, 53, 6228-6234.	2.6	121
23	Photofunctional Materials Fabricated with Chalcopyrite-Type Semiconductor Nanoparticles Composed of AgInS ₂ and Its Solid Solutions. Journal of Physical Chemistry Letters, 2014, 5, 336-347.	2.1	115
24	Rhodium Nanoparticle Encapsulated in a Porous Carbon Shell as an Active Heterogeneous Catalyst for Aromatic Hydrogenation. Advanced Functional Materials, 2008, 18, 2190-2196.	7.8	114
25	Catalytic Activity and Regeneration Property of a Pd Nanoparticle Encapsulated in a Hollow Porous Carbon Sphere for Aerobic Alcohol Oxidation. Langmuir, 2010, 26, 17720-17725.	1.6	111
26	Characterization of Ultrasmall CdS Nanoparticles Prepared by the Size-Selective Photoetching Technique. Journal of Physical Chemistry B, 2001, 105, 6838-6845.	1.2	110
27	Influence of carbon black as an adsorbent used in TiO2 photocatalyst films on photodegradation behaviors of propyzamide. Journal of Catalysis, 1998, 177, 240-246.	3.1	100
28	Preparation of Novel Silicaâ^'Cadmium Sulfide Composite Nanoparticles Having Adjustable Void Space by Size-Selective Photoetching. Journal of the American Chemical Society, 2003, 125, 316-317.	6.6	94
29	Evaluation of Diffusibility of Adsorbed Propionaldehyde on Titanium Dioxide-Loaded Adsorbent Photocatalyst Films from Its Photodecomposition Rate. Journal of Physical Chemistry B, 1997, 101, 2644-2649.	1.2	92
30	Narrow band-edge photoluminescence from AgInS2 semiconductor nanoparticles by the formation of amorphous Ill–VI semiconductor shells. NPG Asia Materials, 2018, 10, 713-726.	3.8	91
31	Photoelectrochemical Doping of TiO2 Particles and the Effect of Charge Carrier Density on the Photocatalytic Activity of Microporous Semiconductor Electrode Films. Journal of the Electrochemical Society, 1996, 143, 3712-3717.	1.3	89
32	Effect of solvents on photocatalytic reduction of carbon dioxide using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices. Journal of Photochemistry and Photobiology A: Chemistry, 1997, 108, 187-192.	2.0	88
33	Small-Angle X-ray Scattering Study of Au Nanoparticles Dispersed in the Ionic Liquids 1-Alkyl-3-methylimidazolium Tetrafluoroborate. Journal of Physical Chemistry C, 2009, 113, 3917-3922.	1.5	87
34	Photochemical hydrogen evolution from aqueous triethanolamine solutions sensitized by binaphthol-modified titanium(IV) oxide under visible-light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160, 61-67.	2.0	85
35	Double-Beam Photoacoustic Spectroscopic Studies on Transient Absorption of Titanium(IV) Oxide Photocatalyst Powders. Journal of Physical Chemistry C, 2007, 111, 11927-11935.	1.5	84
36	Preparation of Luminescent AgInS ₂ â^'AgGaS ₂ Solid Solution Nanoparticles and Their Optical Properties. Journal of Physical Chemistry Letters, 2010, 1, 3283-3287.	2.1	75

#	Article	IF	Citations
37	Self-Assembly of Ionic Liquid (BMI-PF ₆)-Stabilized Gold Nanoparticles on a Silicon Surface: Chemical and Structural Aspects. Langmuir, 2008, 24, 7785-7792.	1.6	74
38	Development of In Situ Electrochemical Scanning Electron Microscopy with Ionic Liquids as Electrolytes. ChemPhysChem, 2008, 9, 763-767.	1.0	69
39	Photocatalytic syntheses of azoxybenzene by visible light irradiation of silica-coated cadmium sulfide nanocomposites. Chemical Communications, 2007, , 483.	2.2	68
40	Encapsulation of titanium(iv) oxide particles in hollow silica for size-selective photocatalytic reactions. Chemical Communications, 2007, , 3753.	2.2	67
41	Development of in situ scanning electron microscope system for real time observation of metal deposition from ionic liquid. Electrochemistry Communications, 2008, 10, 1901-1904.	2.3	67
42	Photoinduced Electron Transfer from Zinc Sulfide Microcrystals Modified with Various Alkanethiols to Methyl Viologen. Langmuir, 1994, 10, 4517-4522.	1.6	61
43	Compositional control of AuPt nanoparticles synthesized in ionic liquids by the sputter deposition technique. CrystEngComm, 2012, 14, 4922.	1.3	61
44	Atomic Resolution Imaging of Gold Nanoparticle Generation and Growth in Ionic Liquids. Journal of the American Chemical Society, 2014, 136, 13789-13797.	6.6	61
45	Size control and immobilization of gold nanoparticles stabilized in an ionic liquid on glass substrates for plasmonic applications. Physical Chemistry Chemical Physics, 2010, 12, 1804-1811.	1.3	60
46	Nanosize-Controlled Syntheses of Indium Metal Particles and Hollow Indium Oxide Particles via the Sputter Deposition Technique in Ionic Liquids. Chemistry of Materials, 2010, 22, 5209-5215.	3.2	59
47	Platinum nanoparticle immobilization onto carbon nanotubes using Pt-sputtered room-temperature ionic liquid. RSC Advances, 2012, 2, 8262.	1.7	59
48	Oxygen reduction catalytic ability of platinum nanoparticles prepared by room-temperature ionic liquid-sputtering method. Journal of Power Sources, 2010, 195, 5980-5985.	4.0	58
49	Effect of Structural Variation on Photocurrent Efficiency in Alkyl-Substituted Porphyrin Solid-State Thin Layer Photocells. Chemistry of Materials, 1998, 10, 1771-1776.	3.2	57
50	Composition-dependent electrocatalytic activity of AuPd alloy nanoparticles prepared via simultaneous sputter deposition into an ionic liquid. Physical Chemistry Chemical Physics, 2013, 15, 7286.	1.3	57
51	Wavelength-Tunable Band-Edge Photoluminescence of Nonstoichiometric Ag–In–S Nanoparticles via Ga ³⁺ Doping. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42844-42855.	4.0	55
52	Light intensity dependence of the action spectra of photocatalytic reactions with anatase titanium(IV) oxide. Chemical Physics Letters, 2004, 392, 220-224.	1.2	54
53	Controlling surface reactions of CdS nanocrystals: photoluminescence activation, photoetching and photostability under light irradiation. Nanotechnology, 2007, 18, 465702.	1.3	54
54	Controlling Shape Anisotropy of ZnS–AgInS ₂ Solid Solution Nanoparticles for Improving Photocatalytic Activity. ACS Applied Materials & Interfaces, 2016, 8, 27151-27161.	4.0	53

#	Article	IF	CITATIONS
55	Photochemical Fine-Tuning of Luminescent Color of Cadmium Selenide Nanoparticles:  Fabricating a Single-Source Multicolor Luminophore. Journal of Physical Chemistry B, 2006, 110, 13314-13318.	1.2	52
56	A Facile Synthesis of AuAg Alloy Nanoparticles Using a Chemical Reaction Induced by Sputter Deposition of Metal onto Ionic Liquids. Electrochemistry, 2009, 77, 636-638.	0.6	52
57	Electrocatalytic Activity of Platinum Nanoparticles Synthesized by Room-Temperature Ionic Liquid-Sputtering Method. Electrochemistry, 2009, 77, 693-695.	0.6	51
58	Tunable Photoelectrochemical Properties of Chalcopyrite AgInS ₂ Nanoparticles Size-Controlled with a Photoetching Technique. Journal of Physical Chemistry C, 2012, 116, 21895-21902.	1.5	51
59	Plasmon-Enhanced Photoluminescence and Photocatalytic Activities of Visible-Light-Responsive ZnS-AgInS2 Solid Solution Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 2511-2520.	1.5	51
60	Photocatalytic reduction of carbon dioxide in the presence of nitrate using TiO2 nanocrystal photocatalyst embedded in SiO2 matrices. Journal of Photochemistry and Photobiology A: Chemistry, 1998, 115, 227-230.	2.0	50
61	Widely Controllable Electronic Energy Structure of ZnSe–AgInSe ₂ Solid Solution Nanocrystals for Quantum-Dot-Sensitized Solar Cells. Journal of Physical Chemistry C, 2014, 118, 29517-29524.	1.5	50
62	Preparation and Photoelectrochemical Properties of Two-Dimensionally Organized CdS Nanoparticle Thin Films. Langmuir, 1999, 15, 1853-1858.	1.6	49
63	Size and Structure-Dependent Photocatalytic Activity of Jingle-Bell-Shaped Silica-Coated Cadmium Sulfide Nanoparticles for Methanol Dehydrogenation. Journal of Physical Chemistry B, 2004, 108, 18670-18674.	1.2	49
64	Crystal phase-controlled synthesis of rod-shaped AgInTe ₂ nanocrystals for in vivo imaging in the near-infrared wavelength region. Nanoscale, 2016, 8, 5435-5440.	2.8	49
65	Photoelectrochemical Properties of Size-Quantized CdS Thin Films Prepared by an Electrochemical Method. Langmuir, 1998, 14, 7077-7081.	1.6	48
66	Stacked-structure-dependent photoelectrochemical properties of CdS nanoparticle/layered double hydroxide (LDH) nanosheet multilayer films prepared by layer-by-layer accumulation. Physical Chemistry Chemical Physics, 2009, 11, 5369.	1.3	48
67	Characteristic Features of Sizeâ€Selective Photoetching of CdS Nanoparticles as a Means of Preparation of Monodisperse Particles. Journal of the Electrochemical Society, 1998, 145, 1964-1968.	1.3	46
68	Photoelectrochemical Characterization of Nearly Monodisperse CdS Nanoparticlesâ^'Immobilized Gold Electrodes. Langmuir, 1999, 15, 1503-1507.	1.6	46
69	Thermally Induced Self-assembly of Gold Nanoparticles Sputter-deposited in Ionic Liquids on Highly Ordered Pyrolytic Graphite Surfaces. Chemistry Letters, 2009, 38, 330-331.	0.7	46
70	Photosensitization of ZnO rod electrodes with AgInS ₂ nanoparticles and ZnS-AgInS ₂ solid solution nanoparticles for solar cell applications. RSC Advances, 2012, 2, 552-559.	1.7	46
71	Photoacoustic spectroscopic analysis of photoinduced change in absorption of titanium(IV) oxide photocatalyst powders: A novel feasible technique for measurement of defect density. Chemical Physics Letters, 2006, 426, 204-208.	1.2	45
72	Palladium Nanoparticles in Ionic Liquid by Sputter Deposition as Catalysts for Suzuki–Miyaura Coupling in Water. Chemistry Letters, 2010, 39, 1069-1071.	0.7	43

#	Article	IF	CITATIONS
73	Highly durable Pt nanoparticle-supported carbon catalysts for the oxygen reduction reaction tailored by using an ionic liquid thin layer. Journal of Materials Chemistry A, 2016, 4, 12152-12157.	5.2	43
74	Emission quench of water-soluble ZnS–AgInS2 solid solution nanocrystals and its application to chemosensors. Chemical Communications, 2009, , 7485.	2.2	42
75	ZnS–AgInS2 nanoparticles as a temperature sensor. Sensors and Actuators B: Chemical, 2013, 176, 505-508.	4.0	42
76	Surface structures of lead sulfide microcrystals modified with 4-(hydroxythio)phenol and their influences on photoinduced charge transfer. Journal of the American Chemical Society, 1993, 115, 1874-1880.	6.6	40
77	Tuning of the fluorescence wavelength of CdTe quantum dots with 2 nm resolution by size-selective photoetching. Nanotechnology, 2009, 20, 215302.	1.3	40
78	Solution-phase Synthesis of Stannite-type Ag2ZnSnS4 Nanoparticles for Application to Photoelectrode Materials. Chemistry Letters, 2012, 41, 1009-1011.	0.7	40
79	Effects of Size Quantization of Zinc Sulfide Microcrystallites on Photocatalytic Reduction of Carbon Dioxide. Chemistry Letters, 1990, 19, 1483-1486.	0.7	39
80	Preparation and Properties of Size-Quantized TiO2 Particles Immobilized in Poly(vinylpyrrolidinone) Gel Films. Langmuir, 1995, 11, 3725-3729.	1.6	39
81	Preparation and Characterization of Water-Soluble Jingle-Bell-Shaped Silica-Coated Cadmium Sulfide Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 11946-11952.	1.2	38
82	Controlling the visible-light driven photocatalytic activity of alloyed ZnSe–AgInSe ₂ quantum dots for hydrogen production. Journal of Materials Chemistry A, 2020, 8, 13142-13149.	5.2	38
83	Preparation of Size-Quantized ZnS Thin Films Using Electrochemical Atomic Layer Epitaxy and Their Photoelectrochemical Properties. Langmuir, 2000, 16, 5820-5824.	1.6	37
84	Photoelectrochemical activities of ultrathin lead sulfide films prepared by electrochemical atomic layer epitaxy. Journal of Electroanalytical Chemistry, 2002, 522, 33-39.	1.9	37
85	Size-selective photocatalytic reactions by titanium(iv) oxide coated with a hollow silica shell in aqueous solutions. Physical Chemistry Chemical Physics, 2007, 9, 6319.	1.3	37
86	Light-induced saturation change in the angle-independent structural coloration of colloidal amorphous arrays. Journal of Materials Chemistry C, 2014, 2, 344-348.	2.7	37
87	Ultrathin oxide shell coating of metal nanoparticles using ionic liquid/metal sputtering. Journal of Materials Chemistry A, 2015, 3, 6177-6186.	5.2	37
88	Photoelectrochemical Properties of Size-Quantized CdS Microcrystals Modified with Various Amounts of Viologen-Functionalized Thiol. The Journal of Physical Chemistry, 1994, 98, 13658-13664.	2.9	35
89	Pyrene-to-porphyrin excited singlet energy transfer in LBL-deposited LDH nanosheets. Journal of Porphyrins and Phthalocyanines, 2007, 11 , 428-433.	0.4	35
90	Photoinduced Electron Transfer between the Anionic Porphyrins and Viologens in Titania Nanosheets and Monodisperse Mesoporous Silica Hybrid Films. ACS Applied Materials & Samp; Interfaces, 2011, 3, 931-935.	4.0	35

#	Article	IF	Citations
91	Synthesis of alloy AuCu nanoparticles with the L1 ₀ structure in an ionic liquid using sputter deposition. Dalton Transactions, 2015, 44, 4186-4194.	1.6	33
92	Electrochemical deposition of gold frame structure on silver nanocubes. Chemical Communications, 2009, , 2917.	2.2	32
93	Tailored Photoluminescence Properties of Ag(In,Ga)Se ₂ Quantum Dots for Near-Infrared <i>In Vivo</i> Imaging. ACS Applied Nano Materials, 2020, 3, 3275-3287.	2.4	32
94	Labeling and in vivo visualization of transplanted adipose tissue-derived stem cells with safe cadmium-free aqueous ZnS coating of ZnS-AgInS2 nanoparticles. Scientific Reports, 2017, 7, 40047.	1.6	31
95	Wavelength- and efficiency-tunable plasmon-induced charge separation by the use of Au–Ag alloy nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 4042-4046.	1.3	30
96	Optical force mapping at the single-nanometre scale. Nature Communications, 2021, 12, 3865.	5.8	30
97	Luminescent Quaternary Ag(In _{<i>x</i>} Ga _{1â€"<i>x</i>})S ₂ /GaS _{<i>y</i>} Core/Shell Quantum Dots Prepared Using Dithiocarbamate Compounds and Photoluminescence Recovery via Post Treatment. Inorganic Chemistry, 2021, 60, 13101-13109.	1.9	30
98	Photochemical electron transfer though the interface of hybrid films of titania nano-sheets and mono-dispersed spherical mesoporous silica particles. Physical Chemistry Chemical Physics, 2006, 8, 4585.	1.3	29
99	Controllable electronic energy structure of size-controlled Cu ₂ ZnSnS ₄ nanoparticles prepared by a solution-based approach. Physical Chemistry Chemical Physics, 2014, 16, 672-675.	1.3	28
100	Development of a novel photocatalytic reaction system for oxidative decomposition of volatile organic compounds in water with enhanced aeration. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160, 121-126.	2.0	27
101	Influence of Zn on the photoluminescence of colloidal (AgIn) $<$ Sub> $<$ Sub> $<$ Sub> $<$ Sub> $<$ Sub> $<$ Chemical Physics, 2017, 19, 3963-3969.	1.3	27
102	Electric-Field-Induced Changes in Absorption and Emission Spectra of CdS Nanoparticles Doped in a Polymer Film. Journal of Physical Chemistry B, 2006, 110, 20927-20936.	1.2	26
103	Single-step preparation of two-dimensionally organized gold particles via ionic liquid/metal sputter deposition. Physical Chemistry Chemical Physics, 2015, 17, 13150-13159.	1.3	26
104	Formation of a Pt-Decorated Au Nanoparticle Monolayer Floating on an Ionic Liquid by the Ionic Liquid/Metal Sputtering Method and Tunable Electrocatalytic Activities of the Resulting Monolayer. ACS Applied Materials & Diterfaces, 2016, 8, 10874-10883.	4.0	26
105	Electroluminescence from band-edge-emitting AgInS2/GaSx core/shell quantum dots. Applied Physics Letters, 2020, 117, .	1.5	26
106	Electrochemical preparation of ZnS/CdS superlattice and its photoelectrochemical properties. Electrochemistry Communications, 2000, 2, 359-362.	2.3	25
107	Photoelectrochemical properties of size-quantized semiconductor photoelectrodes prepared by two-dimensional cross-linking of monodisperse CdS nanoparticles. Electrochimica Acta, 2000, 45, 3269-3276.	2.6	24
108	Effect of ionic surfactants on the iridescent color in lamellar liquid crystalline phase of a nonionic surfactant. Journal of Colloid and Interface Science, 2007, 305, 308-314.	5.0	24

#	Article	IF	CITATIONS
109	Systematic Studies on Emission Quenching of Cadmium Telluride Nanoparticles. Journal of Physical Chemistry C, 2009, 113, 21621-21628.	1.5	24
110	Three-dimensional micro/nano-scale structure fabricated by combination of non-volatile polymerizable RTIL and FIB irradiation. Scientific Reports, 2014, 4, 3722.	1.6	24
111	Single-particle spectroscopy of l–Ill–VI semiconductor nanocrystals: spectral diffusion and suppression of blinking by two-color excitation. Nanoscale, 2016, 8, 13687-13694.	2.8	24
112	Photoluminescence Enhancement by Light Harvesting of Metal–Organic Frameworks Surrounding Semiconductor Quantum Dots. Chemistry of Materials, 2021, 33, 1607-1617.	3.2	24
113	Effect of Surface Charge of 4-Aminothiophenol-Modified PbS Microcrystal Photocatalysts on Photoinduced Charge Transfer. The Journal of Physical Chemistry, 1994, 98, 3036-3043.	2.9	23
114	Enhanced Photocatalytic Activity of Zn–Ag–In–S Semiconductor Nanocrystals with a Dumbbell-Shaped Heterostructure. Journal of Physical Chemistry C, 2018, 122, 13705-13715.	1.5	23
115	Effects of Surface Charges and Surface States of Chemically Modified Cadmium Sulfide Nanoparticles Immobilized to Gold Electrode Substrate on Photoinduced Charge Transfers. Langmuir, 1999, 15, 2714-2718.	1.6	22
116	Layer-by-layer accumulation of cadmium sulfide coreâ€"silica shell nanoparticles and size-selective photoetching to make adjustable void space between core and shell. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 160, 69-76.	2.0	21
117	Direct surface modification of semiconductor quantum dots with metal–organic frameworks. CrystEngComm, 2019, 21, 5568-5577.	1.3	21
118	Core Nanoparticle Engineering for Narrower and More Intense Band-Edge Emission from AgInS2/GaSx Core/Shell Quantum Dots. Nanomaterials, 2019, 9, 1763.	1.9	21
119	Visible Light-induced Hydrogen Evolution from Aqueous Suspensions of Titanium(IV) Oxide Modified with Binaphthol. Electrochemistry, 2002, 70, 442-445.	0.6	20
120	Fabrication of Transition Metal Oxide Nanoparticles Highly Dispersed in Ionic Liquids by Sputter Deposition. Chemistry Letters, 2010, 39, 1072-1074.	0.7	20
121	Surface ligand chemistry on quaternary Ag(In _{<i>x</i>x})S _{<2} semiconductor quantum dots for improving photoluminescence properties. Nanoscale Advances, 2022, 4, 849-857.	2.2	20
122	Oxygen reduction electrocatalysts sophisticated by using Pt nanoparticle-dispersed ionic liquids with electropolymerizable additives. Journal of Materials Chemistry A, 2018, 6, 11853-11862.	5.2	19
123	Photoluminescence Enhancement of ZnS–AgInS2 Solid Solution Nanoparticles Layer-by-layer-assembled in Inorganic Multilayer Thin Films. Chemistry Letters, 2008, 37, 700-701.	0.7	18
124	Photoinduced Electron Transfer of ZnS–AgInS2 Solid-Solution Semiconductor Nanoparticles: Emission Quenching and Photocatalytic Reactions Controlled by Electrostatic Forces. Journal of Physical Chemistry C, 2013, 117, 15667-15676.	1.5	18
125	Ptâ€Nanoparticleâ€Supported Carbon Electrocatalysts Functionalized with a Protic Ionic Liquid and Organic Salt. Advanced Materials Interfaces, 2018, 5, 1701123.	1.9	18
126	Photoluminescence properties of quinary Agâ \in "(In,Ga)â \in "(S,Se) quantum dots with a gradient alloy structure for <i>in vivo</i> bioimaging. Journal of Materials Chemistry C, 2021, 9, 12791-12801.	2.7	18

#	Article	IF	Citations
127	Sensing of protein adsorption with a porous bulk composite comprising silver nanoparticles deposited on hydroxyapatite. Journal of Materials Science: Materials in Medicine, 2010, 21, 1225-1232.	1.7	17
128	Rod-shaped Zn–Ag–In–Te nanocrystals with wavelength-tunable band-edge photoluminescence in the near-IR region. Journal of Materials Chemistry C, 2018, 6, 2034-2042.	2.7	17
129	Composition-Dependent Photoelectrochemical Properties of Nonstoichiometric Cu ₂ ZnSnS ₄ Nanoparticles. Journal of Physical Chemistry C, 2013, 117, 21055-21063.	1.5	16
130	One-step Preparation and Photosensitivity of Size-quantized Cadmium Chalcogenide Nanoparticles Deposited on Porous Zinc Oxide Film Electrodes. Chemistry Letters, 2007, 36, 712-713.	0.7	15
131	Preparation Method Allowing Self-isolation of CdS Nanocrystals Emitting Intense Band-gap Luminescence. Chemistry Letters, 2004, 33, 1344-1345.	0.7	14
132	Fabrication of Nanoframe Structures by Site-selective Assembly of Gold Nanoparticles on Silver Cubes in an Ionic Liquid. Chemistry Letters, 2011, 40, 84-86.	0.7	14
133	Adipose Tissue-Derived Stem Cell Imaging Using Cadmium-Free Quantum Dots. Cell Medicine, 2013, 6, 91-97.	5.0	14
134	Efficient quantum-dot light-emitting diodes using ZnS–AgInS2 solid-solution quantum dots in combination with organic charge-transport materials. Applied Physics Letters, 2020, 116, .	1.5	14
135	Influences of Initial Particle Size on Preparation of Monodisperse CdS Nanoparticles with Size-Selective Photoetching. Chemistry Letters, 1999, 28, 379-380.	0.7	13
136	Platinum Nanoparticle-Supported Electrocatalysts Functionalized by Carbonization of Protic Ionic Liquid and Organic Salts. ACS Applied Energy Materials, 2018, 1, 3030-3034.	2.5	13
137	Photochemical Shape Control of Cadmium Sulfide Nanorods Coated with an Amorphous Silica Thin Layer. Journal of Nanoscience and Nanotechnology, 2009, 9, 506-513.	0.9	12
138	Modulating the immobilization process of Au nanoparticles on TiO2(110) by electrostatic interaction between the surface and ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 13585.	1.3	12
139	Intra- and inter-atomic optical transitions of Fe, Co, and Ni ferrocyanides studied using first-principles many-electron calculations. Journal of Applied Physics, 2016, 119, .	1.1	12
140	Photoluminescence Stability Enhancement of Ag–In–Ga–S/GaS _x Core/Shell Quantum Dots with Thicker Shells by the Addition of Gallium Diethyldithiocarbamate. Chemistry Letters, 2021, 50, 1863-1866.	0.7	12
141	Evaluation of Surface Ligands on Semiconductor Nanoparticle Surfaces Using Electron Transfer to Redox Species. Journal of Physical Chemistry C, 2016, 120, 16012-16023.	1.5	11
142	Fabrication of Jingle-Bell-Shaped Core–Shell Nanoparticulate Films and Molecular-Size-Responsive Photoluminescence Quenching of Cadmium Sulfide Cores. Small, 2006, 2, 854-858.	5.2	10
143	Photo-Induced Electron Migrations in the Nano-Cavities of Mesoporous Silica Sensitized by a Cationic Porphyrin Dye. Journal of Nanoscience and Nanotechnology, 2009, 9, 495-500.	0.9	10
144	Immobilization of ZnS–AgInS2 Solid Solution Nanoparticles on ZnO Rod Array Electrodes and Their Photoresponse with Visible Light Irradiation. Chemistry Letters, 2010, 39, 619-621.	0.7	10

#	Article	IF	CITATIONS
145	Sizeâ€Controlled Synthesis of Ag ₈ SnS ₆ Nanocrystals for Efficient Photoenergy Conversion Systems Driven by Visible and Nearâ€IR Lights. Particle and Particle Systems Characterization, 2014, 31, 1122-1126.	1.2	10
146	Well-controlled synthesis of wurtzite-type Cu ₂ ZnSnS ₄ nanoparticles using multiple sulfur sources via a two-step heating process. CrystEngComm, 2015, 17, 174-182.	1.3	10
147	Controlling the oxidation state of molybdenum oxide nanoparticles prepared by ionic liquid/metal sputtering to enhance plasmon-induced charge separation. RSC Advances, 2020, 10, 28516-28522.	1.7	10
148	Synthesis of metal–cadmium sulfide nanocomposites using jingle-bell-shaped core-shell photocatalyst particles. Journal of Applied Electrochemistry, 2005, 35, 751-756.	1. 5	9
149	Theory for self-consistent interplay between light and nanomaterials strongly modified by metallic nanostructures. Physical Chemistry Chemical Physics, 2013, 15, 4214.	1.3	9
150	Electrocatalytic Activity of Bimetallic Pd-Au Particle Films Prepared by Sequential Sputter Deposition of Pd and Au onto Hydroxyl-functionalized Ionic Liquid. Chemistry Letters, 2017, 46, 956-959.	0.7	9
151	Red light-inducible overall water-splitting photocatalyst, gold-inserted zinc rhodium oxide and bismuth vanadium oxide heterojunction, connected using gold prepared by sputtering in ionic liquid. Journal of Chemical Physics, 2020, 153, 014701.	1.2	9
152	Incoherent Optical Tweezers on Black Titanium. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27586-27593.	4.0	9
153	Red-light-activatable ruthenium phthalocyanine catalysts. Chemical Communications, 2021, 57, 13594-13597.	2.2	9
154	Surface-plasmon-enhanced photocurrent generation of CdTe nanoparticle/titania nanosheet composite layers on Au particulate films. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 244-249.	2.0	8
155	Observation of Ionic Liquid by Electron Microscopy. Hyomen Kagaku, 2007, 28, 322-326.	0.0	8
156	Shape-controlled synthesis of Cu2O nanoparticles with single-digit nanoscale void space via ionic liquid/metal sputtering and their photoelectrochemical properties. Japanese Journal of Applied Physics, 2021, 60, SAACO1.	0.8	8
157	Photo-switching behavior of CdS nanoparticles doped in a polymer film. Comptes Rendus Chimie, 2006, 9, 742-749.	0.2	7
158	Photocatalytic electron flow through the interface of titania nanosheets and mesoporous silica hybrid films. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 207, 135-143.	2.0	7
159	Hybridization of silver nanoparticles on hydroxyapatite in an aqueous solution. Journal of the Ceramic Society of Japan, 2009, 117, 294-298.	0.5	7
160	Temperature-independent formation of Au nanoparticles in ionic liquids by arc plasma deposition. Chemical Physics Letters, 2016, 658, 188-191.	1,2	7
161	Effects of Mordenite Support on Photodegradation of Gaseous Organic Compounds over TiO2Photocatalyst. Bulletin of the Chemical Society of Japan, 1999, 72, 1615-1621.	2.0	6
162	Photocatalytic Preparation of Encapsulated Gold Nanoparticles by Jingle-bell-shaped Cadmium Sulfide–silica Nanoparticles. Topics in Catalysis, 2005, 35, 321-325.	1.3	6

#	Article	IF	Citations
163	Carbon Composite with Pt Nanoparticles Prepared by Room-Temperature Ionic Liquid-Sputtering Method. ECS Transactions, 2010, 33, 127-133.	0.3	6
164	One-Pot Synthesis of Water-Soluble Nanoparticles of ZnS-AgInS2 Solid Solution with Controllable Photoluminescence. Electrochemistry, 2011, 79, 790-792.	0.6	6
165	Long Term Optical Properties of ZnS-AglnS2 and AglnS2-AgGaS2 Solid-Solution Semiconductor Nanoparticles Dispersed in Polymer Matrices. Electrochemistry, 2011, 79, 813-816.	0.6	6
166	Nanostructure Engineering of Size-Quantized Semiconductor Particles for Photoelectrochemical Applications. Electrochemistry, 2017, 85, 534-542.	0.6	6
167	Hot electron transfer in Zn–Ag–In–Te nanocrystal–methyl viologen complexes enhanced with higher-energy photon excitation. RSC Advances, 2020, 10, 16361-16365.	1.7	6
168	Nanometric surface design of size-quantized semiconductor microcrystals. Advanced Materials, 1995, 7, 492-494.	11.1	5
169	Photoacoustic Spectroscopic Estimation of Electron Mobility in Titanium(IV) Oxide Photocatalysts. Studies in Surface Science and Catalysis, 2007, 172, 429-432.	1.5	5
170	Efficient Reductive Alkylation of Aniline with Acetone over Pt Nanoparticles Encapsulated in Hollow Porous Carbon. Chemistry Letters, 2008, 37, 948-949.	0.7	5
171	Introduction of Ionic Liquid to Vacuum Conditions for Development of Material Productions and Analyses. Electrochemistry, 2012, 80, 498-503.	0.6	5
172	Use of Ionic Liquid Under Vacuum Conditions. , 0, , .		5
173	Photoluminescence characterization of ZnS-AgInS2 (ZAIS) nanoparticles adsorbed on plasmonic chip studied with fluorescence microscopy. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 367, 347-354.	2.0	5
174	Enhanced Photoelectrochemical Properties of Znâ^'Agâ^'Inâ^'Te Nanocrystals with High Energy Photon Excitation. ChemNanoMat, 2019, 5, 1028-1035.	1.5	5
175	[Paper] Green Electroluminescence Generated by Band-edge Transition in Ag-In-Ga-S/GaS _{<i>x</i>} Core/shell Quantum Dots. ITE Transactions on Media Technology and Applications, 2021, 9, 222-227.	0.3	5
176	Preparation of CdS Microcrystals Covalently Bound with Viologen Groups and Their Photoelectrochemical Properties. Chemistry Letters, 1994, 23, 977-980.	0.7	4
177	Modification of excimer emission of perylene dye thin films by single silver nanocubes. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 194-198.	2.0	4
178	Improvement of photoluminescence stability of ZnS-AgInS2 nanoparticles through interactions with ionic liquids. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332, 371-375.	2.0	4
179	Variations in Photoluminescence Intensity of a Quantum Dot Assembly Investigated by Its Adsorption on Cubic Metal–Organic Frameworks. Journal of Physical Chemistry C, 2021, 125, 8285-8293.	1.5	4
180	Optical Trapping of Nanocrystals at Oil/Water Interfaces: Implications for Photocatalysis. ACS Applied Nano Materials, 2021, 4, 11743-11752.	2.4	4

#	Article	IF	Citations
181	Encapsulation of AgInS ₂ /GaS _{<i>x</i>} core/shell quantum dots in In-fumarate metal–organic frameworks for stability enhancement. CrystEngComm, 2022, 24, 3715-3723.	1.3	4
182	Photoinduced Destruction of Bromoform Dissolved in Water Using TiO2-loaded Adsorbent. Zeitschrift Fur Physikalische Chemie, 1999, 213, 43-48.	1.4	3
183	Enhanced Photocurrent Generation in Layer-by-Layer-Assembled CdS Nanoparticle/Titania Nanosheet Multilayer Films. Electrochemistry, 2011, 79, 776-778.	0.6	3
184	Shape-controlled Synthesis of ZnS–CulnS2–AgInS2 Solid Solution Nanoparticles and Their Photoluminescence Properties. Chemistry Letters, 2013, 42, 171-173.	0.7	3
185	Nanotraffic Lights: Rayleigh Scattering Microspectroscopy of Optically Trapped Octahedral Gold Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 23096-23102.	1.5	3
186	Microscopic Structure of Separately Accommodated Porphyrins and Viologens in Mesoporous Silica and Titania Nanosheet Hybrid Films. Transactions of the Materials Research Society of Japan, 2007, 32, 449-452.	0.2	3
187	Surface Modification of Photoluminescent CdS Nanocrystals Inducing Spontaneous Phase Transfer Reaction. Chemistry Letters, 2005, 34, 1300-1301.	0.7	2
188	Origin of chiral discrimination by a two-dimensionally chiral self-assembled monolayer: A quantum chemical study. Chemical Physics Letters, 2006, 432, 502-507.	1.2	2
189	ã,≅,ªãf³æ¶²ä½"ã,'甓ã,ãŸin situé>»åé¡•å¾®é†è¦³å Ÿæ³•ã®é–‹ç™º. Hyomen Gijutsu/Journal of the Surface Finish	ingoStociet _y	y o f Japan, 2(
190	Visualization of Electrochemical Reactions by Redox-dependent Quenching of Photoluminescence from ZnS-AgInS2 Solid Solution Semiconductor Nanoparticles. Electrochemistry, 2014, 82, 338-340.	0.6	2
191	Single-step preparation of indium tin oxide nanocrystals dispersed in ionic liquids via oxidation of molten In–Sn alloys. Chemical Communications, 2016, 52, 12241-12244.	2.2	2
192	Electrocatalyst: Ptâ€Nanoparticleâ€Supported Carbon Electrocatalysts Functionalized with a Protic Ionic Liquid and Organic Salt (Adv. Mater. Interfaces 3/2018). Advanced Materials Interfaces, 2018, 5, 1870010.	1.9	2
193	Perylene y3 FRET System to Analyze Photoactive DNA Structures. Chemistry - A European Journal, 2021, 27, 12845-12850.	1.7	2
194	Analysis of Quantum Dot Fluorescence Coupled with a Microsphere Resonator. Japanese Journal of Applied Physics, 2006, 45, 6917-6921.	0.8	1
195	Quantum dot sensitized solar cells. , 2008, , .		1
196	(Invited) Emission Quenching of Semiconductor Quantum Dots and its Application to Biosensing. ECS Transactions, 2010, 28, 257-266.	0.3	1
197	Nanoscale Laser Processing of Hollow Silica Microbeads Assisted by Surface Plasmon Resonance of Gold Particles. Chemistry Letters, 2011, 40, 1411-1413.	0.7	1
198	Two-photon absorption spectrum of solid solution nanocrystals of ZnS-AgInS < sub> 2 < /sub>. Chemistry Letters, 0, , .	0.7	1

#	Article	IF	CITATIONS
199	Optical trapping of gold and semiconductor nanoparticles at oil-water interfaces with a focused near-infrared laser beam. , $2018, \ldots$		1
200	åŠå°Žä½"ナノ粒åã®è³¿è£½ãƒ»å³å®šåŒ−ã•å‰é>»æ°−åŒ−å¦ç‰¹æ€§. Electrochemistry, 2001, 69, 866-	-8 7 16	1
201	Synthesis of submicron-sized CdS particles using reverse micelles. Journal of Nanophotonics, 2020, 14, 1.	0.4	1
202	Temperature dependences of photoluminescence intensities observed from AgInGaS and AgInGaS/GaSx core–shell nanoparticles. Journal of Nanophotonics, 2020, 14, 1.	0.4	1
203	Solution-Phase Syntheses and Photochemical Properties of Silver Bismuth Sulfide Nanoparticles. ECS Meeting Abstracts, 2022, MA2022-01, 934-934.	0.0	1
204	Preparation of Alloy Nanoparticles by a Simultaneous Sputter Deposition of Au and Ag onto Ionic Liquids. ECS Meeting Abstracts, 2008, , .	0.0	0
205	Emission Quench of ZnS-AgInS ₂ Semiconductor Nanocrystals and Its Application to Biosensors. ECS Transactions, 2009, 25, 141-150.	0.3	O
206	Studies on Reaction Conditions for Size-selective Photoetching of Cadmium Telluride Nanocrystals. Electrochemistry, 2010, 78, 170-174.	0.6	0
207	Enhancement of Photocatalytic Activities of CdS Nanoparticles by the Immobilization on Au Particles. ECS Meeting Abstracts, $2011, , .$	0.0	0
208	Size-dependent Photoelectrochemical Properties of Semiconducting Cu2ZnSnS4 Nanoparticles. ECS Meeting Abstracts, 2012, , .	0.0	0
209	lï½Zã,¤,ªãf³æ¶²ä½"ã¸ã®ã,¹ãf'ãffã,¿ãfªãf³ã,°ã«ã,°ã«ãfŠãfŽç²'å啿°ã•ãã®æ′»ç"". Electrochemistry, 2013, 81, 6	53 5.6 40.	0
210	Electron Microscope Observation of Soft Materials Using Ionic Liquids. Hyomen Kagaku, 2015, 36, 195-200.	0.0	0
211	<i>In situ</i> Electron Microscope Observation of Surface Chemical Reactions Using Ionic Liquid. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2016, 67, 79-83.	0.1	0
212	Enhancement of electrocatalytic activity of octahedral Au@Pt core-shell nanoparticles by the surface plasmon excitation., 2017,,.		0
213	Plasmonic Au nano-needle fabricated by optical vortex laser illumination. , 2017, , .		0
214	Composition-Controlled Synthesis of Near-IR-Light-Emitting Ag-Ιn-Ga-Se Nanocrystals for Biological Imaging. ECS Meeting Abstracts, 2021, MA2021-01, 718-718.	0.0	0
215	Preparation of Highly Luminescent Semiconductor Nanoparticles for the Application of White-Light-Emitting Devices. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2006, 14, 178-183.	0.0	0
216	Colloidal Syntheses of Semiconductor Nanoparticles with Tunable Photoluminescence in Visible-Light Region and Their Application to Photo-functional Materials. Journal of the Japan Society of Colour Material, 2014, 87, 430-435.	0.0	0

#	Article	IF	CITATIONS
217	Photocatalytic Reaction and Surface Photoreaction on Ultra-Fine Semiconductor Particles. Preparation of Size-Quantized Semiconductor Microcrystals and Their Application to Photocatalysts Hyomen Kagaku, 1995, 16, 173-179.	0.0	O
218	Controlling the Size and Chemical Composition of Multinary Semiconductor Nanocrystals for Improving Photochemical Functions. Hyomen Kagaku, 2017, 38, 18-23.	0.0	0
219	(Invited) Acceleration of Electrocatalytic Reaction By Photoexciting Localized Surface Plasmon of Octahedral Au@Pt Core-Shell Nanoparticles. ECS Meeting Abstracts, 2018, , .	0.0	O
220	Preparation of low-toxic Zn-Ag-In-Te quantum dots with tunable near-IR emission toward optical applications. , $2018, \ldots$		0
221	Narrow Band-Edge Photoluminescence of Ga3+-Doped AgInS2 Quantum Dots. ECS Meeting Abstracts, 2019, , .	0.0	0
222	(Invited) Controlling the Electronic Energy Structure of ZnSe-AgInSe2 Solid Solution Nanorods for Visible-Light-Driven Photocatalytic H2 Evolution. ECS Meeting Abstracts, 2020, MA2020-01, 1724-1724.	0.0	0
223	(Invited) Hot Hole Transfer from Zn-Ag-in-Te Nanocrystals Photo-Excited with High-Energy Photons. ECS Meeting Abstracts, 2020, MA2020-01, 899-899.	0.0	0
224	(Invited) Photocatalytic H2 Evolution with Anisotropic-Shaped ZnSe-AgInSe2 Solid Solution Nanorods. ECS Meeting Abstracts, 2020, MA2020-02, 3090-3090.	0.0	0
225	Fabrication and Evaluation of Electroluminescence Devices Using Quantum Dots As Light Emitting Materials. ECS Meeting Abstracts, 2020, MA2020-02, 3638-3638.	0.0	0
226	Fabrication of Quantum Dots@Metal–Organic Frameworks Nanocomposites By Direct Surface Modification. ECS Meeting Abstracts, 2020, MA2020-02, 2726-2726.	0.0	0
227	Embedding Quantum Dots with High Quantum Yield in Inorganic Matrix By Sol-Gel Method. ECS Meeting Abstracts, 2020, MA2020-02, 3639-3639.	0.0	0
228	Promoting Hot Carrier Extraction in Zn-Ag-In-Te Nanocrystals By Irradiation of High-Energy Light. ECS Meeting Abstracts, 2020, MA2020-02, 1880-1880.	0.0	0
229	Gold Amount Dependence of Red Light Responsive Z-Scheme Photocatalyst on Water-Splitting Activity Using Gold Prepared By Sputtering in Ionic Liquid. ECS Meeting Abstracts, 2020, MA2020-02, 3118-3118.	0.0	0
230	Syntheses and Photoelectrochemical Properties of Plasmonic Molybdenum Oxide Nanoparticles Via Ionic Liquid/Metal Sputtering. ECS Meeting Abstracts, 2020, MA2020-02, 2962-2962.	0.0	0
231	Narrow-Band Photoluminescence from Cadmium-Free I-III-VI Ternary Semiconductor Quantum Dots By Surface Modification. ECS Meeting Abstracts, 2020, MA2020-02, 2727-2727.	0.0	0
232	Controlling Electronic Energy Structure of Ag–Ιn–Ga–S–Se Quantum Dots Showing Band-Edge Emission. ECS Meeting Abstracts, 2020, MA2020-02, 3121-3121.	0.0	0
233	(Keynote) Band-Edge Emission from AgInS ₂ /Ga ₂ S ₃ Core/Shell Quantum Dots and Enhancement of Their Quantum Yield. ECS Meeting Abstracts, 2020, MA2020-02, 3076-3076.	0.0	0
234	(Invited)ÂPreparation of Dumbbell-Shaped Nanocrystals Composed of ZnS-AgInS ₂ Solid Solution and Their Photocatalytic H ₂ Evolution Activity. ECS Meeting Abstracts, 2018, MA2018-01, 1886-1886.	0.0	0

#	Article	IF	CITATIONS
235	Recent Progress of Multinary Semiconductor Quantum Dots Towards Luminescent and Photoelectrochemical Applications. Denki Kagaku, 2022, 90, 115-121.	0.0	0
236	(Invited, Digital Presentation) Controlling the Energy Structure of Ag(In,Ga)S Quantum Dots for Photocatalytic H ₂ Evolution. ECS Meeting Abstracts, 2022, MA2022-01, 1576-1576.	0.0	0
237	Controlling Electronic Energy Structure of Near-IR-Responsive Ag(In,Ga)(S,Se) ₂ Quantum Dots for In Vivo Bioimaging. ECS Meeting Abstracts, 2022, MA2022-01, 935-935.	0.0	0