Nicolas F Bouché

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7213925/publications.pdf

Version: 2024-02-01

414414 331670 1,666 33 21 32 citations h-index g-index papers 33 33 33 1596 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	The MUSE <i>Hubble </i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A1.	5.1	236
2	UBIQUITOUS GIANT Lyα NEBULAE AROUND THE BRIGHTEST QUASARS AT zÂâ^¼Â3.5 REVEALED WITH MUSE ^{â^—} . Astrophysical Journal, 2016, 831, 39.	4.5	201
3	New perspectives on strong z≃ 0.5 Mg ii absorbers: are halo mass and equivalent width anticorrelated?. Monthly Notices of the Royal Astronomical Society, 2006, 371, 495-512.	4.4	122
4	PHYSICAL CONDITIONS IN THE LOW-IONIZATION COMPONENT OF STARBURST OUTFLOWS: THE SHAPE OF NEAR-ULTRAVIOLET AND OPTICAL ABSORPTION-LINE TROUGHS IN KECK SPECTRA OF ULIRGs. Astrophysical Journal, 2009, 703, 1394-1415.	4.5	109
5	MusE GAs FLOw and Wind (MEGAFLOW) II. A study of gas accretion around <i>z</i> Ââ‰^Â1 star-forming galaxies with background quasars. Monthly Notices of the Royal Astronomical Society, 2019, 485, 1961-1980.	4.4	86
6	MusE GAs FLOw and Wind (MEGAFLOW) – III. Galactic wind properties using background quasars. Monthly Notices of the Royal Astronomical Society, 2019, 490, 4368-4381.	4.4	81
7	A SINFONI integral field spectroscopy survey for galaxy counterparts to damped Lyman α systems - III. Three additional detectionsa~ Monthly Notices of the Royal Astronomical Society, 2012, 419, 3060-3073.	4.4	80
8	An atlas of MUSE observations towards twelve massive lensing clusters. Astronomy and Astrophysics, 2021, 646, A83.	5.1	71
9	NEW PERSPECTIVE ON GALAXY OUTFLOWS FROM THE FIRST DETECTION OF BOTH INTRINSIC AND TRAVERSE METAL-LINE ABSORPTION. Astrophysical Journal Letters, 2014, 792, L12.	8.3	63
10	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2018, 619, A27.	5.1	60
11	THE VLT SINFONI Mg ii PROGRAM FOR LINE EMITTERS (SIMPLE). II. BACKGROUND QUASARS PROBING \$Zsim 1\$ GALACTIC WINDS. Astrophysical Journal, 2015, 804, 83.	4.5	54
12	MUSEQuBES: calibrating the redshifts of Ly α emitters using stacked circumgalactic medium absorption profiles. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1013-1022.	4.4	44
13	Galaxy and Quasar Fueling Caught in the Act from the Intragroup to the Interstellar Medium. Astrophysical Journal Letters, 2018, 869, L1.	8.3	39
14	Searching for light in the darkness: Bounds on ALP dark matter with the optical MUSE-faint survey. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021, 814, 136075.	4.1	37
15	Fast Outflows Identified in Early Star-forming Galaxies at zÂ=Â5–6. Astrophysical Journal, 2019, 886, 29.	4.5	35
16	MusE GAs FLOw and Wind (MEGAFLOW) VIII. Discovery of a Mg <scp>ii</scp> emission halo probed by a quasar sightline. Monthly Notices of the Royal Astronomical Society, 2021, 507, 4294-4315.	4.4	35
17	MUSE Spectroscopic Identifications of Ultra-faint Emission Line Galaxies with M _{UV} Ââ^1/4Ââ^'15 [*] . Astrophysical Journal Letters, 2018, 865, L1.	8.3	34
18	Galactic winds with MUSE: A direct detection of Fe ii* emission from a ⟨i>z ⟨/i>= 1.29 galaxy. Astronomy and Astrophysics, 2017, 605, A118.	5.1	31

#	Article	IF	CITATIONS
19	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2018, 617, A62.	5.1	30
20	Stacking the Cosmic Web in fluorescent Ly α emission with MUSE. Monthly Notices of the Royal Astronomical Society, 2018, 475, 3854-3869.	4.4	30
21	The MUSE <i>Hubble</i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A7.	5.1	28
22	A Lyman limit system associated with galactic winds ${\bf \hat{a}}^{\bf \cdot}$ Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	19
23	MusE GAs FLOw and Wind (MEGAFLOW) IV. A two sightline tomography of a galactic wind. Monthly Notices of the Royal Astronomical Society, 2020, 492, 4576-4588.	4.4	17
24	MusE GAs FLOw and Wind V. The dust/metallicity-anisotropy of the circum-galactic medium. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3733-3745.	4.4	17
25	MUSEQuBES: characterizing the circumgalactic medium of redshift â‰^3.3 Ly α emitters. Monthly Notices of the Royal Astronomical Society, 2021, 508, 5612-5637.	4.4	17
26	Tracing Lyl± and LyC Escape in Galaxies with Mg ii Emission. Astrophysical Journal, 2022, 933, 202.	4.5	17
27	Characterizing circumgalactic gas around massive ellipticals at <i>z</i> â‰^0.4 – III. The galactic environment of a chemically pristine Lyman limit absorber. Monthly Notices of the Royal Astronomical Society, 2019, 484, 431-441.	4.4	16
28	A Giant Lyα Nebula and a Small-scale Clumpy Outflow in the System of the Exotic Quasar J0952+0114 Unveiled by MUSE ^{â^—} . Astrophysical Journal, 2019, 880, 47.	4.5	15
29	MusE GAs FLOw and Wind (MEGAFLOW) VI. A study of C <scp> iv</scp> and Mg <scp> ii</scp> absorbing gas surrounding [O <scp> ii</scp>] emitting galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 506, 1355-1363.	g 4.4	12
30	A Comparison of Circumgalactic Mg ii Absorption between the TNG50 Simulation and the MEGAFLOW Survey. Astrophysical Journal, 2021, 923, 56.	4.5	12
31	Detecting the cosmic web: Lyα emission from simulated filaments at zÂ=Â3. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5439-5448.	4.4	7
32	MusE GAs FLOw and wind (MEGAFLOW) VII. A NOEMA pilot program to probe molecular gas in galaxies with measured circumgalactic gas flows. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1900-1910.	4.4	7
33	Melatonin Levels and Lowâ€Frequency Magnetic Fields in Humans and Rats: New Insights From a Bayesian Logistic Regression. Bioelectromagnetics, 2019, 40, 539-552.	1.6	4