
Carol Lopez de Dicastillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7213443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrospinning and cyclodextrin inclusion complexes: An emerging technological combination for developing novel active food packaging materials. Critical Reviews in Food Science and Nutrition, 2022, 62, 5495-5510.	10.3	28
2	Development of an antibacterial coaxial bionanocomposite based on electrospun core/shell fibers loaded with ethyl lauroyl arginate and cellulose nanocrystals for active food packaging. Food Packaging and Shelf Life, 2022, 31, 100802.	7.5	14
3	Foaming with scCO2 and Impregnation with Cinnamaldehyde of PLA Nanocomposites for Food Packaging. Processes, 2022, 10, 376.	2.8	12
4	Antimicrobial food packaging system based on ethyl lauroyl arginate-loaded core/shell electrospun structures by using hydrophilic and hydrophobic polymers. Polymer Testing, 2021, 93, 106937.	4.8	6
5	Designing Biodegradable and Active Multilayer System by Assembling an Electrospun Polycaprolactone Mat Containing Quercetin and Nanocellulose between Polylactic Acid Films. Polymers, 2021, 13, 1288.	4.5	8
6	Effect of Organic Modifier Types on the Physical–Mechanical Properties and Overall Migration of Post-Consumer Polypropylene/Clay Nanocomposites for Food Packaging. Polymers, 2021, 13, 1502.	4.5	14
7	Designing active mats based on cellulose acetate/polycaprolactone core/shell structures with different release kinetics. Carbohydrate Polymers, 2021, 261, 117849.	10.2	14
8	Natural antimicrobials and antioxidants added to polylactic acid packaging films. Part I: Polymer processing techniques. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 3388-3403.	11.7	44
9	Development of Biodegradable Films Loaded with Phages with Antilisterial Properties. Polymers, 2021, 13, 327.	4.5	21
10	Food Packaging Plastics: Identification and Recycling. Composites Science and Technology, 2021, , 311-343.	0.6	4
11	Active PLA Packaging Films: Effect of Processing and the Addition of Natural Antimicrobials and Antioxidants on Physical Properties, Release Kinetics, and Compostability. Antioxidants, 2021, 10, 1976.	5.1	32
12	Design of active electrospun mats with single and core-shell structures to achieve different curcumin release kinetics. Journal of Food Engineering, 2020, 273, 109900.	5.2	29
13	Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action. Beilstein Journal of Nanotechnology, 2020, 11, 1450-1469.	2.8	80
14	Physical properties and safety of 100% post-consumer PET bottle -organoclay nanocomposites towards a circular economy. Sustainable Chemistry and Pharmacy, 2020, 17, 100285.	3.3	16
15	Large scale synthesis of silver vanadate nanowires consolidated into bulk cylinder with enhanced antibacterial properties. Materials Letters, 2020, 278, 128403.	2.6	4
16	The use of nanoadditives within recycled polymers for food packaging: Properties, recyclability, and safety. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 1760-1776.	11.7	40
17	Antimicrobial Bilayer Nanocomposites Based on the Incorporation of As-Synthetized Hollow Zinc Oxide Nanotubes. Nanomaterials, 2020, 10, 503.	4.1	26
18	Cucumis metuliferus Fruit Extract Loaded Acetate Cellulose Coatings for Antioxidant Active Packaging. Polymers, 2020, 12, 1248.	4.5	23

#	Article	IF	CITATIONS
19	Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria. Beilstein Journal of Nanotechnology, 2019, 10, 1716-1725.	2.8	38
20	Enhancing Thermal Stability and Bioaccesibility of AçaÃ-Fruit Polyphenols through Electrohydrodynamic Encapsulation into Zein Electrosprayed Particles. Antioxidants, 2019, 8, 464.	5.1	28
21	Improving polyphenolic thermal stability of <i>Aristotelia Chilensis</i> fruit extract by encapsulation within electrospun cyclodextrin capsules. Journal of Food Processing and Preservation, 2019, 43, e14044.	2.0	19
22	Increasing the incorporation of recycled PET on polymeric blends through the reinforcement with commercial nanoclays. Applied Clay Science, 2019, 180, 105185.	5.2	32
23	Development of Bilayer Biodegradable Composites Containing Cellulose Nanocrystals with Antioxidant Properties. Polymers, 2019, 11, 1945.	4.5	23
24	Development of poly(lactic acid) films with propolis as a source of active compounds: Biodegradability, physical, and functional properties. Journal of Applied Polymer Science, 2019, 136, 47090.	2.6	29
25	Electrospun PVA fibers loaded with antioxidant fillers extracted from Durvillaea antarctica algae and their effect on plasticized PLA bionanocomposites. European Polymer Journal, 2018, 103, 145-157.	5.4	50
26	Supercritical impregnation of thymol in poly(lactic acid) filled with electrospun poly(vinyl) Tj ETQq0 0 0 rgBT /Over of Food Engineering, 2018, 217, 1-10.	rlock 10 Tf 5.2	50 467 Tc 79
27	Magnetic nanotubes obtained from atomic layer deposition coated electrospun nanofibers. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	1.2	10
28	Novel Antimicrobial Titanium Dioxide Nanotubes Obtained through a Combination of Atomic Layer Deposition and Electrospinning Technologies. Nanomaterials, 2018, 8, 128.	4.1	50
29	Modifying an Active Compound's Release Kinetic Using a Supercritical Impregnation Process to Incorporate an Active Agent into PLA Electrospun Mats. Polymers, 2018, 10, 479.	4.5	22
30	A traditional aboriginal condiment as an antioxidant agent in the development of biodegradable active packaging. Journal of Applied Polymer Science, 2017, 134, .	2.6	12
31	Supercritical impregnation of cinnamaldehyde into polylactic acid as a route to develop antibacterial food packaging materials. Food Research International, 2017, 99, 650-659.	6.2	83
32	Chilean berry Ugni molinae Turcz. fruit and leaves extracts with interesting antioxidant, antimicrobial and tyrosinase inhibitory properties. Food Research International, 2017, 102, 119-128.	6.2	34
33	Improvement of Polylactide Properties through Cellulose Nanocrystals Embedded in Poly(Vinyl) Tj ETQq1 1 0.7843	314.rgBT /0 4.1	Oyerlock 1
34	Novel Polyvinyl Alcohol/Starch Electrospun Fibers as a Strategy to Disperse Cellulose Nanocrystals into Poly(lactic acid). Polymers, 2017, 9, 117.	4.5	19
35	Evaluation of Polyphenols and Antioxidant Capacity of Fruits and Vegetables Using a Modified Enzymatic Extraction Method. Food Technology and Biotechnology, 2016, 54, 462-467.	2.1	39

CAROL LOPEZ DE DICASTILLO

#	Article	IF	CITATIONS
37	Cross-linked methyl cellulose films with murta fruit extract for antioxidant and antimicrobial active food packaging. Food Hydrocolloids, 2016, 60, 335-344.	10.7	105
38	Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications. Carbohydrate Polymers, 2016, 136, 1052-1060.	10.2	120
39	Development of Biocomposites with Antioxidant Activity Based on Red Onion Extract and Acetate Cellulose. Antioxidants, 2015, 4, 533-547.	5.1	25
40	Advances in antioxidant active food packaging. Trends in Food Science and Technology, 2014, 35, 42-51.	15.1	445
41	EFFECT OF ORGANOCLAY INCORPORATION ON THERMAL, PHYSICAL AND MORPHOLOGICAL PROPERTIES OF LLDPE NANOCOMPOSITES FOR ACTIVE FOOD PACKAGING APPLICATIONS. Journal of the Chilean Chemical Society, 2014, 59, 2681-2685.	1.2	10
42	Improving the Capacity of Polypropylene To Be Used in Antioxidant Active Films: Incorporation of Plasticizer and Natural Antioxidants. Journal of Agricultural and Food Chemistry, 2013, 61, 8462-8470.	5.2	32
43	Active films based on cocoa extract with antioxidant, antimicrobial and biological applications. Food Chemistry, 2013, 139, 51-58.	8.2	62
44	Interaction and Release of Catechin from Anhydride Maleic-Grafted Polypropylene Films. ACS Applied Materials & Interfaces, 2013, 5, 3281-3289.	8.0	26
45	Immobilization of green tea extract on polypropylene films to control the antioxidant activity in food packaging. Food Research International, 2013, 53, 522-528.	6.2	58
46	Enhancing the Release of the Antioxidant Tocopherol from Polypropylene Films by Incorporating the Natural Plasticizers Lecithin, Olive Oil, or Sunflower Oil. Journal of Agricultural and Food Chemistry, 2013, 61, 11848-11857.	5.2	22
47	Selective "One-Pot―Synthesis of Functionalized Cyclopentenones. Journal of Organic Chemistry, 2012, 77, 6327-6331.	3.2	8
48	Reducing Oxidation of Foods Through Antioxidant Active Packaging Based on Ethyl Vinyl Alcohol and Natural Flavonoids. Packaging Technology and Science, 2012, 25, 457-466.	2.8	50
49	Active antioxidant packaging films: Development and effect on lipid stability of brined sardines. Food Chemistry, 2012, 131, 1376-1384.	8.2	198
50	Development of Active Polyvinyl Alcohol/β-Cyclodextrin Composites To Scavenge Undesirable Food Components. Journal of Agricultural and Food Chemistry, 2011, 59, 11026-11033.	5.2	44
51	Development of New Antioxidant Active Packaging Films Based on Ethylene Vinyl Alcohol Copolymer (EVOH) and Green Tea Extract. Journal of Agricultural and Food Chemistry, 2011, 59, 7832-7840.	5.2	180
52	Food applications of active packaging EVOH films containing cyclodextrins for the preferential scavenging of undesirable compounds. Journal of Food Engineering, 2011, 104, 380-386.	5.2	51
53	Immobilization of β-cyclodextrin in ethylene-vinyl alcohol copolymer for active food packaging applications. Journal of Membrane Science, 2010, 353, 184-191.	8.2	73
54	Improving the Antioxidant Protection of Packaged Food by Incorporating Natural Flavonoids into Ethylenea^^Vinyl Alcohol Copolymer (EVOH) Films. Journal of Agricultural and Food Chemistry, 2010, 58, 10958-10964.	5.2	110

1

#	Article	IF	CITATIONS
55	Antimicrobial Effect of Titanium Dioxide Nanoparticles. , 0, , .		50

56 Active Electrospun Mats: A Promising Material for Active Food Packaging. , 0, , .