## Sergio Baranzini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7213088/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis. Nature, 2011, 476, 214-219.                                                                                                       | 13.7 | 2,400     |
| 2  | Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nature<br>Genetics, 2013, 45, 1353-1360.                                                                                   | 9.4  | 1,213     |
| 3  | Multiple sclerosis. Lancet, The, 2018, 391, 1622-1636.                                                                                                                                                                       | 6.3  | 1,204     |
| 4  | The Influence of the Proinflammatory Cytokine, Osteopontin, on Autoimmune Demyelinating Disease.<br>Science, 2001, 294, 1731-1735.                                                                                           | 6.0  | 807       |
| 5  | Meta-analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nature Genetics, 2009, 41, 776-782.                                                             | 9.4  | 729       |
| 6  | Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility.<br>Science, 2019, 365, .                                                                                                  | 6.0  | 710       |
| 7  | Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in<br>mouse models. Proceedings of the National Academy of Sciences of the United States of America, 2017,<br>114, 10713-10718. | 3.3  | 709       |
| 8  | Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis<br>in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114,<br>10719-10724.     | 3.3  | 666       |
| 9  | Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes and Development, 2009, 23, 1571-1585.                                                                             | 2.7  | 537       |
| 10 | Incidental MRI anomalies suggestive of multiple sclerosis. Neurology, 2009, 72, 800-805.                                                                                                                                     | 1.5  | 509       |
| 11 | Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature, 2008, 451,<br>1076-1081.                                                                                                        | 13.7 | 472       |
| 12 | Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple sclerosis.<br>Nature, 2010, 464, 1351-1356.                                                                                                 | 13.7 | 463       |
| 13 | Genome-wide association analysis of susceptibility and clinical phenotype in multiple sclerosis. Human<br>Molecular Genetics, 2009, 18, 767-778.                                                                             | 1.4  | 419       |
| 14 | Pathway and network-based analysis of genome-wide association studies in multiple sclerosis. Human<br>Molecular Genetics, 2009, 18, 2078-2090.                                                                               | 1.4  | 371       |
| 15 | Systematic integration of biomedical knowledge prioritizes drugs for repurposing. ELife, 2017, 6, .                                                                                                                          | 2.8  | 333       |
| 16 | Longâ€ŧerm evolution of multiple sclerosis disability in the treatment era. Annals of Neurology, 2016,<br>80, 499-510.                                                                                                       | 2.8  | 331       |
| 17 | Class II HLA interactions modulate genetic risk for multiple sclerosis. Nature Genetics, 2015, 47,<br>1107-1113.                                                                                                             | 9.4  | 312       |
| 18 | Mapping Multiple Sclerosis Susceptibility to the HLA-DR Locus in African Americans. American Journal<br>of Human Genetics, 2004, 74, 160-167.                                                                                | 2.6  | 311       |

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Axin2 as regulatory and therapeutic target in newborn brain injury and remyelination. Nature<br>Neuroscience, 2011, 14, 1009-1016.                                                                            | 7.1  | 307       |
| 20 | The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nature Reviews Genetics, 2008, 9, 516-526.                                                                                              | 7.7  | 294       |
| 21 | Myelin Regeneration: A Recapitulation of Development?. Annual Review of Neuroscience, 2011, 34, 21-43.                                                                                                        | 5.0  | 282       |
| 22 | Heterogeneity at the HLA-DRB1 locus and risk for multiple sclerosis. Human Molecular Genetics, 2006, 15, 2813-2824.                                                                                           | 1.4  | 279       |
| 23 | Astrocyte-encoded positional cues maintain sensorimotor circuit integrity. Nature, 2014, 509, 189-194.                                                                                                        | 13.7 | 266       |
| 24 | Silent progression in disease activity–free relapsing multiple sclerosis. Annals of Neurology, 2019, 85,<br>653-666.                                                                                          | 2.8  | 265       |
| 25 | Recirculating Intestinal IgA-Producing Cells Regulate Neuroinflammation via IL-10. Cell, 2019, 176, 610-624.e18.                                                                                              | 13.5 | 241       |
| 26 | The genetics of multiple sclerosis: an upâ€ŧoâ€date review. Immunological Reviews, 2012, 248, 87-103.                                                                                                         | 2.8  | 230       |
| 27 | Rituximab Efficiently Depletes Increased CD20-Expressing T Cells in Multiple Sclerosis Patients. Journal of Immunology, 2014, 193, 580-586.                                                                   | 0.4  | 223       |
| 28 | Differential Micro RNA Expression in PBMC from Multiple Sclerosis Patients. PLoS ONE, 2009, 4, e6309.                                                                                                         | 1.1  | 222       |
| 29 | B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. Journal of<br>Immunology, 1999, 163, 5133-44.                                                                           | 0.4  | 217       |
| 30 | Modules, networks and systems medicine for understanding disease and aiding diagnosis. Genome<br>Medicine, 2014, 6, 82.                                                                                       | 3.6  | 169       |
| 31 | Peroxisome proliferator–activated receptor (PPAR)α expression in T cells mediates gender differences<br>in development of T cell–mediated autoimmunity. Journal of Experimental Medicine, 2007, 204, 321-330. | 4.2  | 167       |
| 32 | The Genetics of Multiple Sclerosis: From 0 to 200 in 50 Years. Trends in Genetics, 2017, 33, 960-970.                                                                                                         | 2.9  | 165       |
| 33 | Hippocampal demyelination and memory dysfunction are associated with increased levels of the neuronal microRNA miRâ€124 and reduced AMPA receptors. Annals of Neurology, 2013, 73, 637-645.                   | 2.8  | 164       |
| 34 | Genome-Wide Pharmacogenomic Analysis of the Response to Interferon Beta Therapy in Multiple<br>Sclerosis. Archives of Neurology, 2008, 65, 337-44.                                                            | 4.9  | 154       |
| 35 | Genotype–Phenotype correlations in multiple sclerosis: HLA genes influence disease severity inferred by 1HMR spectroscopy and MRI measures. Brain, 2009, 132, 250-259.                                        | 3.7  | 154       |
| 36 | Janus-like opposing roles of CD47 in autoimmune brain inflammation in humans and mice. Journal of<br>Experimental Medicine, 2012, 209, 1325-1334.                                                             | 4.2  | 147       |

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Transcriptional Analysis of Multiple Sclerosis Brain Lesions Reveals a Complex Pattern of Cytokine<br>Expression. Journal of Immunology, 2000, 165, 6576-6582.                                                                                  | 0.4  | 145       |
| 38 | Transcription-Based Prediction of Response to IFNÎ <sup>2</sup> Using Supervised Computational Methods. PLoS<br>Biology, 2004, 3, e2.                                                                                                           | 2.6  | 144       |
| 39 | The genetics of autoimmune diseases: a networked perspective. Current Opinion in Immunology, 2009, 21, 596-605.                                                                                                                                 | 2.4  | 133       |
| 40 | Gut microbiota–specific IgA <sup>+</sup> B cells traffic to the CNS in active multiple sclerosis.<br>Science Immunology, 2020, 5, .                                                                                                             | 5.6  | 132       |
| 41 | Aberrant oligodendroglial–vascular interactions disrupt the blood–brain barrier, triggering CNS<br>inflammation. Nature Neuroscience, 2019, 22, 709-718.                                                                                        | 7.1  | 131       |
| 42 | Gut microbiome analysis in neuromyelitis optica reveals overabundance of <i>Clostridium perfringens</i> . Annals of Neurology, 2016, 80, 443-447.                                                                                               | 2.8  | 125       |
| 43 | Multiple sclerosis: Genomic rewards. Journal of Neuroimmunology, 2001, 113, 171-184.                                                                                                                                                            | 1.1  | 123       |
| 44 | Genetic variation influences glutamate concentrations in brains of patients with multiple sclerosis.<br>Brain, 2010, 133, 2603-2611.                                                                                                            | 3.7  | 123       |
| 45 | Heterogeneous Network Edge Prediction: A Data Integration Approach to Prioritize Disease-Associated<br>Genes. PLoS Computational Biology, 2015, 11, e1004259.                                                                                   | 1.5  | 120       |
| 46 | A pathogenic and clonally expanded B cell transcriptome in active multiple sclerosis. Proceedings of the United States of America, 2020, 117, 22932-22943.                                                                                      | 3.3  | 119       |
| 47 | Multiple sclerosis genetics—is the glass half full, or half empty?. Nature Reviews Neurology, 2010, 6,<br>429-437.                                                                                                                              | 4.9  | 115       |
| 48 | Low-Frequency and Rare-Coding Variation Contributes to Multiple Sclerosis Risk. Cell, 2018, 175, 1679-1687.e7.                                                                                                                                  | 13.5 | 115       |
| 49 | Abrogation of T cell quiescence characterizes patients at high risk for multiple sclerosis after the<br>initial neurological event. Proceedings of the National Academy of Sciences of the United States of<br>America, 2008, 105, 11839-11844. | 3.3  | 105       |
| 50 | Uncoupling the Roles of <i>HLA-DRB1</i> and <i>HLA-DRB5</i> Genes in Multiple Sclerosis. Journal of<br>Immunology, 2008, 181, 5473-5480.                                                                                                        | 0.4  | 105       |
| 51 | Systems biology and its application to the understanding of neurological diseases. Annals of Neurology, 2009, 65, 124-139.                                                                                                                      | 2.8  | 99        |
| 52 | Parallel states of pathological Wnt signaling in neonatal brain injury and colon cancer. Nature<br>Neuroscience, 2014, 17, 506-512.                                                                                                             | 7.1  | 98        |
| 53 | Blood RNA profiling in a large cohort of multiple sclerosis patients and healthy controls. Human<br>Molecular Genetics, 2013, 22, 4194-4205.                                                                                                    | 1.4  | 81        |
| 54 | The HLA locus and multiple sclerosis in Spain. Role in disease susceptibility, clinical course and response to interferon-1². Journal of Neuroimmunology, 2002, 130, 194-201.                                                                   | 1.1  | 78        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Pharmacogenomic analysis of interferon receptor polymorphisms in multiple sclerosis. Genes and Immunity, 2003, 4, 147-152.                                                                                            | 2.2 | 77        |
| 56 | The Role of the Gut Microbiome in Multiple Sclerosis Risk and Progression: Towards Characterization of the "MS Microbiome― Neurotherapeutics, 2018, 15, 126-134.                                                      | 2.1 | 75        |
| 57 | Disease-modifying therapies alter gut microbial composition in MS. Neurology: Neuroimmunology and NeuroInflammation, 2019, 6, e517.                                                                                   | 3.1 | 75        |
| 58 | A validated gene regulatory network and GWAS identifies early regulators of T cell–associated diseases. Science Translational Medicine, 2015, 7, 313ra178.                                                            | 5.8 | 66        |
| 59 | Association of HLA Genetic Risk Burden With Disease Phenotypes in Multiple Sclerosis. JAMA<br>Neurology, 2016, 73, 795.                                                                                               | 4.5 | 64        |
| 60 | Modeling the cumulative genetic risk for multiple sclerosis from genome-wide association data.<br>Genome Medicine, 2011, 3, 3.                                                                                        | 3.6 | 63        |
| 61 | The molecular signature of therapeutic mesenchymal stem cells exposes the architecture of the hematopoietic stem cell niche synapse. BMC Genomics, 2007, 8, 65.                                                       | 1.2 | 61        |
| 62 | Expression profiling of Aldh1l1â€precursors in the developing spinal cord reveals glial lineageâ€specific genes and direct Sox9â€Nfe2l1 interactions. Glia, 2013, 61, 1518-1532.                                      | 2.5 | 61        |
| 63 | Manitoba-oculo-tricho-anal (MOTA) syndrome is caused by mutations in FREM1. Journal of Medical Genetics, 2011, 48, 375-382.                                                                                           | 1.5 | 60        |
| 64 | Osteopontin polymorphisms and disease course in multiple sclerosis. Genes and Immunity, 2003, 4, 312-315.                                                                                                             | 2.2 | 59        |
| 65 | Multiple Sclerosis-Associated Changes in the Composition and Immune Functions of Spore-Forming Bacteria. MSystems, 2018, 3, .                                                                                         | 1.7 | 56        |
| 66 | The Gut Microbiome in Neuromyelitis Optica. Neurotherapeutics, 2018, 15, 92-101.                                                                                                                                      | 2.1 | 54        |
| 67 | Integrating biomedical research and electronic health records to create knowledge-based biologically meaningful machine-readable embeddings. Nature Communications, 2019, 10, 3045.                                   | 5.8 | 54        |
| 68 | Precision medicine in chronic disease management: The multiple sclerosis<br><scp>B</scp> io <scp>S</scp> creen. Annals of Neurology, 2014, 76, 633-642.                                                               | 2.8 | 53        |
| 69 | A genome-wide association study of brain lesion distribution in multiple sclerosis. Brain, 2013, 136, 1012-1024.                                                                                                      | 3.7 | 52        |
| 70 | Blood miRNA expression pattern is a possible risk marker for natalizumab-associated progressive<br>multifocal leukoencephalopathy in multiple sclerosis patients. Multiple Sclerosis Journal, 2014, 20,<br>1851-1859. | 1.4 | 50        |
| 71 | The autoimmune disease-associated transcription factors EOMES and TBX21 are dysregulated in multiple sclerosis and define a molecular subtype of disease. Clinical Immunology, 2014, 151, 16-24.                      | 1.4 | 49        |
| 72 | Selective Estrogen Receptor Modulators Enhance CNS Remyelination Independent of Estrogen<br>Receptors. Journal of Neuroscience, 2019, 39, 2184-2194.                                                                  | 1.7 | 49        |

5

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Revealing the genetic basis of multiple sclerosis: are we there yet?. Current Opinion in Genetics and Development, 2011, 21, 317-324.                                                                                                               | 1.5 | 46        |
| 74 | Genetics of multiple sclerosis. Current Opinion in Neurology, 2012, 25, 239-245.                                                                                                                                                                    | 1.8 | 46        |
| 75 | IFN-Î <sup>3</sup> orchestrates mesenchymal stem cell plasticity through the signal transducer and activator of transcription 1 and 3 and mammalian target of rapamycin pathways. Journal of Allergy and Clinical Immunology, 2017, 139, 1667-1676. | 1.5 | 46        |
| 76 | microRNA and exosome profiling in multiple sclerosis. Multiple Sclerosis Journal, 2020, 26, 599-604.                                                                                                                                                | 1.4 | 46        |
| 77 | Genome-Wide Network Analysis Reveals the Global Properties of IFN-Î <sup>2</sup> Immediate Transcriptional Effects<br>in Humans. Journal of Immunology, 2007, 178, 5076-5085.                                                                       | 0.4 | 43        |
| 78 | Data integration and systems biology approaches for biomarker discovery: Challenges and opportunities for multiple sclerosis. Journal of Neuroimmunology, 2012, 248, 58-65.                                                                         | 1.1 | 42        |
| 79 | Changes in matrix metalloproteinases and their inhibitors during interferon-beta treatment in multiple sclerosis. Clinical Immunology, 2009, 130, 145-150.                                                                                          | 1.4 | 41        |
| 80 | Tob1 plays a critical role in the activation of encephalitogenic T cells in CNS autoimmunity. Journal of Experimental Medicine, 2013, 210, 1301-1309.                                                                                               | 4.2 | 40        |
| 81 | Genome sequencing uncovers phenocopies in primary progressive multiple sclerosis. Annals of Neurology, 2018, 84, 51-63.                                                                                                                             | 2.8 | 38        |
| 82 | Biolink Model: A universal schema for knowledge graphs in clinical, biomedical, and translational science. Clinical and Translational Science, 2022, 15, 1848-1855.                                                                                 | 1.5 | 38        |
| 83 | Modular Transcriptional Activity Characterizes the Initiation and Progression of Autoimmune<br>Encephalomyelitis. Journal of Immunology, 2005, 174, 7412-7422.                                                                                      | 0.4 | 37        |
| 84 | iCTNet: A Cytoscape plugin to produce and analyze integrative complex traits networks. BMC<br>Bioinformatics, 2011, 12, 380.                                                                                                                        | 1.2 | 36        |
| 85 | Mapping gene activity in complex disorders: Integration of expression and genomic scans for multiple sclerosis. Journal of Neuroimmunology, 2005, 167, 157-169.                                                                                     | 1.1 | 34        |
| 86 | In depth comparison of an individual's DNA and its lymphoblastoid cell line using whole genome sequencing. BMC Genomics, 2012, 13, 477.                                                                                                             | 1.2 | 34        |
| 87 | Longitudinal system-based analysis of transcriptional responses to type I interferons. Physiological Genomics, 2009, 38, 362-371.                                                                                                                   | 1.0 | 32        |
| 88 | Genetic associations with brain cortical thickness inÂmultiple sclerosis. Genes, Brain and Behavior,<br>2015, 14, 217-227.                                                                                                                          | 1.1 | 31        |
| 89 | The autoimmune risk gene ZMIZ1 is a vitamin D responsive marker of a molecular phenotype of multiple sclerosis. Journal of Autoimmunity, 2017, 78, 57-69.                                                                                           | 3.0 | 31        |
| 90 | The relative contributions of obesity, vitamin D, leptin, and adiponectin to multiple sclerosis risk: A<br>Mendelian randomization mediation analysis. Multiple Sclerosis Journal, 2021, 27, 1994-2000.                                             | 1.4 | 31        |

| #   | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Early complement genes are associated with visual system degeneration in multiple sclerosis. Brain, 2019, 142, 2722-2736.                                                                                                         | 3.7 | 30        |
| 92  | Childhood obesity and multiple sclerosis: A Mendelian randomization study. Multiple Sclerosis<br>Journal, 2021, 27, 2150-2158.                                                                                                    | 1.4 | 30        |
| 93  | PINBPA: Cytoscape app for network analysis of GWAS data. Bioinformatics, 2015, 31, 262-264.                                                                                                                                       | 1.8 | 29        |
| 94  | Opposite Roles of NMDA Receptors in Relapsing and Primary Progressive Multiple Sclerosis. PLoS ONE, 2013, 8, e67357.                                                                                                              | 1.1 | 29        |
| 95  | A gene pathway analysis highlights the role of cellular adhesion molecules in multiple sclerosis susceptibility. Genes and Immunity, 2014, 15, 126-132.                                                                           | 2.2 | 26        |
| 96  | Analysis of antibody gene rearrangement, usage, and specificity in chronic focal encephalitis.<br>Neurology, 2002, 58, 709-716.                                                                                                   | 1.5 | 25        |
| 97  | Response to Comment on "The Influence of the Proinflammatory Cytokine, Osteopontin, on Autoimmune Demyelinating Disease". Science, 2003, 299, 1845b-1845.                                                                         | 6.0 | 25        |
| 98  | Role of antiproliferative gene <i>Tob1</i> in the immune system. Clinical and Experimental Neuroimmunology, 2014, 5, 132-136.                                                                                                     | 0.5 | 24        |
| 99  | NR1H3 p.Arg415Gln Is Not Associated to Multiple Sclerosis Risk. Neuron, 2016, 92, 333-335.                                                                                                                                        | 3.8 | 24        |
| 100 | Household paired design reduces variance and increases power in multi-city gut microbiome study in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 366-379.                                                             | 1.4 | 24        |
| 101 | Functional Energetics of CD4+-Cellular Immunity in Monoclonal Antibody-Associated Progressive<br>Multifocal Leukoencephalopathy in Autoimmune Disorders. PLoS ONE, 2011, 6, e18506.                                               | 1.1 | 23        |
| 102 | Levels of brainâ€derived neurotrophic factor in patients with multiple sclerosis. Annals of Clinical and Translational Neurology, 2020, 7, 2251-2261.                                                                             | 1.7 | 23        |
| 103 | Naive CD4 T-cell activation identifies MS patients having rapid transition to progressive MS.<br>Neurology, 2014, 82, 681-690.                                                                                                    | 1.5 | 22        |
| 104 | Classification of neurological diseases using multi-dimensional CSF analysis. Brain, 2021, 144, 2625-2634.                                                                                                                        | 3.7 | 22        |
| 105 | Embedding electronic health records onto a knowledge network recognizes prodromal features of<br>multiple sclerosis and predicts diagnosis. Journal of the American Medical Informatics Association:<br>JAMIA, 2022, 29, 424-434. | 2.2 | 22        |
| 106 | Gene Expression Profiling in Neurological Disorders: Toward a Systems-Level Understanding of the<br>Brain. NeuroMolecular Medicine, 2005, 6, 031-052.                                                                             | 1.8 | 21        |
| 107 | Harnessing electronic medical records to advance research on multiple sclerosis. Multiple Sclerosis<br>Journal, 2019, 25, 408-418.                                                                                                | 1.4 | 21        |
| 108 | Gene expression analysis reveals altered brain transcription of glutamate receptors and inflammatory genes in a patient with chronic focal (Rasmussen's) encephalitis. Journal of Neuroimmunology, 2002, 128, 9-15.               | 1.1 | 20        |

| #   | Article                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Quantitative Longitudinal Analysis of T Cell Receptor Repertoire Expression in HIV-Infected Patients on Antiretroviral and Interleukin-2 Therapy. AIDS Research and Human Retroviruses, 2007, 23, 741-747. | 0.5  | 20        |
| 110 | Sequencing of the IL6 gene in a case–control study of cerebral palsy in children. BMC Medical<br>Genetics, 2013, 14, 126.                                                                                  | 2.1  | 20        |
| 111 | Prognostic biomarkers of IFNb therapy in multiple sclerosis patients. Multiple Sclerosis Journal, 2015, 21, 894-904.                                                                                       | 1.4  | 20        |
| 112 | Meta-analysis of genome-wide association studies reveals genetic overlap between Hodgkin lymphoma<br>and multiple sclerosis. International Journal of Epidemiology, 2016, 45, 728-740.                     | 0.9  | 20        |
| 113 | Increased Transcriptional Activity of Milk-Related Genes following the Active Phase of Experimental<br>Autoimmune Encephalomyelitis and Multiple Sclerosis. Journal of Immunology, 2007, 179, 4074-4082.   | 0.4  | 19        |
| 114 | Progress toward a universal biomedical data translator. Clinical and Translational Science, 2022, 15, 1838-1847.                                                                                           | 1.5  | 17        |
| 115 | Systems-based medicine approaches to understand and treat complex diseases. The example of multiple sclerosis. Autoimmunity, 2006, 39, 651-662.                                                            | 1.2  | 16        |
| 116 | Detection of identity by descent using next-generation whole genome sequencing data. BMC<br>Bioinformatics, 2012, 13, 121.                                                                                 | 1.2  | 16        |
| 117 | Cell type-specific transcriptomics identifies neddylation as a novel therapeutic target in multiple sclerosis. Brain, 2021, 144, 450-461.                                                                  | 3.7  | 16        |
| 118 | Genetic variation in the odorant receptors family 13 and the mhc loci influence mate selection in a multiple sclerosis dataset. BMC Genomics, 2010, 11, 626.                                               | 1.2  | 15        |
| 119 | Polygenic risk score association with multiple sclerosis susceptibility and phenotype in Europeans.<br>Brain, 2023, 146, 645-656.                                                                          | 3.7  | 15        |
| 120 | A non-synonymous single-nucleotide polymorphism associated with multiple sclerosis risk affects the<br>EVI5 interactome. Human Molecular Genetics, 2015, 24, ddv412.                                       | 1.4  | 14        |
| 121 | Distinctive waves of innate immune response in the retina in experimental autoimmune<br>encephalomyelitis. JCI Insight, 2021, 6, .                                                                         | 2.3  | 14        |
| 122 | Specific hypomethylation programs underpin B cell activation in early multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .                    | 3.3  | 14        |
| 123 | Large-scale gene-expression studies and the challenge of multiple sclerosis. Genome Biology, 2002, 3, reviews1027.1.                                                                                       | 13.9 | 13        |
| 124 | Dynamic regulation of alternative ATP-binding cassette transporter A1 transcripts. Biochemical and Biophysical Research Communications, 2003, 306, 463-468.                                                | 1.0  | 13        |
| 125 | Protein network analysis reveals selectively vulnerable regions and biological processes in FTD.<br>Neurology: Genetics, 2018, 4, e266.                                                                    | 0.9  | 12        |
| 126 | A New Point Mutation (M313T) in the Thyroid Hormone Receptor Î <sup>2</sup> Gene in a Patient with Resistance to<br>Thyroid Hormone. Thyroid, 1997, 7, 43-44.                                              | 2.4  | 11        |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | A robust type I interferon gene signature from blood RNA defines quantitative but not qualitative<br>differences between three major IFNÂ drugs in the treatment of multiple sclerosis. Human Molecular<br>Genetics, 2015, 24, 3192-3205. | 1.4 | 11        |
| 128 | iCTNet2: integrating heterogeneous biological interactions to understand complex traits.<br>F1000Research, 2015, 4, 485.                                                                                                                  | 0.8 | 11        |
| 129 | Interferon-beta affects mitochondrial activity in CD4 <sup>+</sup> lymphocytes: Implications for mechanism of action in multiple sclerosis. Multiple Sclerosis Journal, 2015, 21, 1262-1270.                                              | 1.4 | 10        |
| 130 | Data characterizing the ZMIZ1 molecular phenotype of multiple sclerosis. Data in Brief, 2017, 11, 364-370.                                                                                                                                | 0.5 | 10        |
| 131 | Vitamin D Regulates MerTK-Dependent Phagocytosis in Human Myeloid Cells. Journal of Immunology,<br>2020, 205, 398-406.                                                                                                                    | 0.4 | 10        |
| 132 | Serum antibodies to phosphatidylcholine in MS. Neurology: Neuroimmunology and NeuroInflammation, 2020, 7, e765.                                                                                                                           | 3.1 | 10        |
| 133 | Knowledge Network Embedding of Transcriptomic Data from Spaceflown Mice Uncovers Signs and Symptoms Associated with Terrestrial Diseases. Life, 2021, 11, 42.                                                                             | 1.1 | 10        |
| 134 | SARS-CoV-2 meta-interactome suggests disease-specific, autoimmune pathophysiologies and therapeutic targets. F1000Research, 2020, 9, 992.                                                                                                 | 0.8 | 10        |
| 135 | MRI-derived g-ratio and lesion severity in newly diagnosed multiple sclerosis. Brain Communications, 2021, 3, fcab249.                                                                                                                    | 1.5 | 10        |
| 136 | Patient with an Xp21 contiguous gene deletion syndrome in association with agenesis of the corpus callosum. American Journal of Medical Genetics Part A, 1997, 70, 216-221.                                                               | 2.4 | 9         |
| 137 | Genomics and new targets for multiple sclerosis. Pharmacogenomics, 2005, 6, 151-161.                                                                                                                                                      | 0.6 | 9         |
| 138 | Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia. Scientific Reports, 2019, 9, 10854.                                                            | 1.6 | 9         |
| 139 | Genetic contribution to multiple sclerosis risk among Ashkenazi Jews. BMC Medical Genetics, 2015, 16, 55.                                                                                                                                 | 2.1 | 8         |
| 140 | Immune cell-specific transcriptional profiling highlights distinct molecular pathways controlled by Tob1 upon experimental autoimmune encephalomyelitis. Scientific Reports, 2016, 6, 31603.                                              | 1.6 | 8         |
| 141 | Mononuclear cell transcriptome changes associated with dimethyl fumarate in MS. Neurology:<br>Neuroimmunology and NeuroInflammation, 2018, 5, e470.                                                                                       | 3.1 | 8         |
| 142 | iCTNet2: integrating heterogeneous biological interactions to understand complex traits.<br>F1000Research, 2015, 4, 485.                                                                                                                  | 0.8 | 8         |
| 143 | iPINBPA: an integrative network-based functional module discovery tool for genome-wide association studies. Pacific Symposium on Biocomputing Pacific Symposium on Biocomputing, 2015, , 255-66.                                          | 0.7 | 8         |
| 144 | iPINBPA: AN INTEGRATIVE NETWORK-BASED FUNCTIONAL MODULE DISCOVERY TOOL FOR GENOME-WIDE                                                                                                                                                    |     | 7         |

ASSOCIATION STUDIES., 2014, , .

| #   | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | SNP imputation bias reduces effect size determination. Frontiers in Genetics, 2015, 6, 30.                                                                                                              | 1.1 | 7         |
| 146 | Evidence for association of chromosome 10 open reading frame (C10orf27) gene polymorphisms and multiple sclerosis. Multiple Sclerosis Journal, 2008, 14, 412-414.                                       | 1.4 | 6         |
| 147 | Assessing the Power of Exome Chips. PLoS ONE, 2015, 10, e0139642.                                                                                                                                       | 1.1 | 6         |
| 148 | Direct Deletion Analysis in Two Duchenne Muscular Dystrophy Symptomatic Females Using<br>Polymorphic Dinucleotide (CA) <sub>n</sub> Loci within the Dystrophin Gene. BMB Reports, 2003, 36,<br>179-184. | 1.1 | 6         |
| 149 | Deletion patterns in Argentine patients with Duchenne and Becker muscular dystrophy. Neurological Research, 1998, 20, 409-414.                                                                          | 0.6 | 5         |
| 150 | Predictive modeling of therapy response in multiple sclerosis using gene expression data. , 2006, 2006, 5519-22.                                                                                        |     | 5         |
| 151 | Autoimmune Disorders. , 2013, , 822-838.                                                                                                                                                                |     | 5         |
| 152 | Insights into microbiome research 2: Experimental design, sample collection, and shipment. Multiple<br>Sclerosis Journal, 2018, 24, 1419-1420.                                                          | 1.4 | 5         |
| 153 | Mendelian randomization study shows no causal effects of serum urate levels on the risk of MS.<br>Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, e920.                                      | 3.1 | 5         |
| 154 | A biomedical open knowledge network harnesses the power of AI to understand deep human biology.<br>AI Magazine, 2022, 43, 46-58.                                                                        | 1.4 | 5         |
| 155 | FutureMS cohort profile: a Scottish multicentre inception cohort study of relapsing-remitting multiple sclerosis. BMJ Open, 2022, 12, e058506.                                                          | 0.8 | 5         |
| 156 | Longitudinal analysis of B cell repertoire and antibody gene rearrangements during early HIV infection. Genes and Immunity, 2005, 6, 66-69.                                                             | 2.2 | 4         |
| 157 | Carrier detection in Duchenne and Becker muscular dystrophy Argentine families. Clinical Genetics, 1998, 54, 503-511.                                                                                   | 1.0 | 4         |
| 158 | Transcriptional expression patterns triggered by chemically distinct neuroprotective molecules.<br>Neuroscience, 2012, 226, 10-20.                                                                      | 1.1 | 4         |
| 159 | New insights into the genetics of multiple sclerosis. Journal of Rehabilitation Research and Development, 2002, 39, 201-9.                                                                              | 1.6 | 4         |
| 160 | Four new polymorphisms in the human dystrophin gene from an Argentinian population. , 1997, 20, 1451-1453.                                                                                              |     | 3         |
| 161 | Gene expression profiling in MS: a fulfilled promise?. Multiple Sclerosis Journal, 2013, 19, 1813-1814.                                                                                                 | 1.4 | 3         |
| 162 | The microbiome and MS: The influence of the microbiota on MS risk and progression—Session chair<br>summary. Multiple Sclerosis Journal, 2018, 24, 587-589.                                              | 1.4 | 3         |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Insights into microbiome research 1: How to choose appropriate controls for a microbiome study in MS?. Multiple Sclerosis Journal, 2018, 24, 1278-1279.                                                       | 1.4 | 3         |
| 164 | Insights into microbiome research 6: The role of consortia in studying the role of microbes in health and disease. Multiple Sclerosis Journal, 2019, 25, 336-337.                                             | 1.4 | 3         |
| 165 | Biological concepts of multiple sclerosis pathogenesis and relationship to treatment. , 2007, , 23-44.                                                                                                        |     | 3         |
| 166 | Patient with an Xp21 contiguous gene deletion syndrome in association with agenesis of the corpus callosum. American Journal of Medical Genetics Part A, 1997, 70, 216-21.                                    | 2.4 | 2         |
| 167 | Peroxisome proliferator–activated receptor (PPAR)α expression in T cells mediates gender differences<br>in development of T cell–mediated autoimmunity. Journal of Experimental Medicine, 2007, 204, 693-693. | 4.2 | 1         |
| 168 | Peroxisome Poliferator-activated Receptor-α (PPARα) Expression in T Cells Mediates Gender Differences<br>in Development of T Cell-mediated Autoimmunity. Clinical Immunology, 2007, 123, S74.                 | 1.4 | 1         |
| 169 | Whole genome sequences of 2 octogenarians with sustained cognitive abilities. Neurobiology of Aging, 2015, 36, 1435-1438.                                                                                     | 1.5 | 1         |
| 170 | Patient with an Xp21 contiguous gene deletion syndrome in association with agenesis of the corpus callosum. , 1997, 70, 216.                                                                                  |     | 1         |
| 171 | Gene expression profiling in neurological and neuroinflammatory diseases. , 2008, , 115-130.                                                                                                                  |     | 1         |
| 172 | Meta-Analysis of Hodgkin Lymphoma and Asthma Genome-Wide Association Scans reveals common variants in GATA3. Blood, 2014, 124, 135-135.                                                                       | 0.6 | 1         |
| 173 | 10 Advanced data mining and predictive modelling at the core of personalised medicine. Studies in<br>Multidisciplinarity, 2005, , 165-192.                                                                    | 0.0 | Ο         |
| 174 | Uncoupling the roles of HLA-DRB1 and HLA-DRB5 genes in multiple sclerosis. Journal of Immunology, 2009, 182, 2551.1-2551.                                                                                     | 0.4 | 0         |
| 175 | The genetics of multiple sclerosis. , 0, , 35-45.                                                                                                                                                             |     | 0         |
| 176 | Genome-wide RNA expression profiling in human grey and white matter tissue reveals a role for<br>PSA-NCAM dysregulation in MS pathogenesis. Journal of Neuroimmunology, 2014, 275, 180-181.                   | 1.1 | 0         |
| 177 | Decreased miR-219 expression in MS: Clinical implications?. Journal of Neuroimmunology, 2014, 275, 111.                                                                                                       | 1.1 | 0         |
| 178 | ID: 144. Cytokine, 2015, 76, 93.                                                                                                                                                                              | 1.4 | 0         |
| 179 | The era of GWAS is over – Commentary. Multiple Sclerosis Journal, 2018, 24, 260-261.                                                                                                                          | 1.4 | 0         |
| 180 | Insights into microbiome research 3: Who's there versus what are they doing?. Multiple Sclerosis<br>Journal, 2018, 24, 1541-1542.                                                                             | 1.4 | 0         |

| #   | Article                                                                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Insights into microbiome research 4: The computational analysis. Multiple Sclerosis Journal, 2019, 25, 21-22.                                                                                      | 1.4 | 0         |
| 182 | Insights into microbiome research 5: Mapping is first but function must come next. Multiple Sclerosis<br>Journal, 2019, 25, 193-195.                                                               | 1.4 | 0         |
| 183 | Peroxisome proliferator–activated receptor (PPAR)α expression in T cells mediates gender differences<br>in development of T cell–mediated autoimmunity. Journal of Cell Biology, 2007, 176, i9-i9. | 2.3 | 0         |
| 184 | A framework and mechanistically focused, in silico method for enabling rational translational research. Summit on Translational Bioinformatics, 2008, 2008, 46-50.                                 | 0.7 | 0         |
| 185 | Predictive modeling of therapy response in multiple sclerosis using gene expression data. Annual<br>International Conference of the IEEE Engineering in Medicine and Biology Society, 2006, , .    | 0.5 | Ο         |