Geza Toth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7212980/publications.pdf

Version: 2024-02-01

		218677	182427
58	2,654 citations	26	51
papers	citations	h-index	g-index
59	59	59	4220
39	39	39	4220
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	WS ₂ and MoS ₂ thin film gas sensors with high response to NH ₃ in air at low temperature. Nanotechnology, 2019, 30, 405501.	2.6	106
2	High photoresponse of individual WS2 nanowire-nanoflake hybrid materials. Applied Physics Letters, 2018, 112, .	3.3	7
3	Portable cyber-physical system for indoor and outdoor gas sensing. Sensors and Actuators B: Chemical, 2017, 252, 983-990.	7.8	15
4	Novel, smart and RFID assisted critical temperature indicator for supply chain monitoring. Journal of Food Engineering, 2017, 193, 20-28.	5.2	69
5	Evaluation of physicochemical/microbial properties and life cycle assessment (LCA) of PLA-based nanocomposite active packaging. LWT - Food Science and Technology, 2017, 75, 305-315.	5.2	69
6	On-chip integrated vertically aligned carbon nanotube based super- and pseudocapacitors. Scientific Reports, 2017, 7, 16594.	3.3	30
7	A novel WS2 nanowire-nanoflake hybrid material synthesized from WO3 nanowires in sulfur vapor. Scientific Reports, 2016, 6, 25610.	3.3	21
8	High dynamic stiffness mechanical structures with nanostructured composite coatings deposited by high power impulse magnetron sputtering. Carbon, 2016, 98, 24-33.	10.3	4
9	Synthesis of tungsten carbide and tungsten disulfide on vertically aligned multi-walled carbon nanotube forests and their application as non-Pt electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2015, 3, 14609-14616.	10.3	60
10	Trifluoroacetylazobenzene for optical and electrochemical detection of amines. Journal of Materials Chemistry A, 2015, 3, 4687-4694.	10.3	38
11	Carbon nanotube (CNT) forest grown on diamond-like carbon (DLC) thin films significantly improves electrochemical sensitivity and selectivity towards dopamine. Sensors and Actuators B: Chemical, 2015, 211, 177-186.	7.8	52
12	Suppressing tool chatter with novel multi-layered nanostructures of carbon based composite coatings. Journal of Materials Processing Technology, 2015, 223, 292-298.	6.3	14
13	The Effect of Al Buffer Layer on the Catalytic Synthesis of Carbon Nanotube Forests. Topics in Catalysis, 2015, 58, 1112-1118.	2.8	8
14	Electrocatalytic Properties of Carbon Nanotubes Decorated with Copper and Bimetallic CuPd Nanoparticles. Topics in Catalysis, 2015, 58, 1119-1126.	2.8	6
15	Facile synthesis of nanostructured carbon materials over RANEY \hat{A}^{\otimes} nickel catalyst films printed on Al2O3 and SiO2 substrates. Journal of Materials Chemistry C, 2015, 3, 1823-1829.	5.5	2
16	Gas Sensing and Thermal Transport Through Carbon-Nanotube-Based Nanodevices. Challenges and Advances in Computational Chemistry and Physics, 2014, , 99-136.	0.6	1
17	Solder transfer of carbon nanotube microfin coolers to ceramic chips. Applied Thermal Engineering, 2014, 65, 539-543.	6.0	8
18	Photocatalytic activity of nitrogen-doped TiO2-based nanowires: a photo-assisted Kelvin probe force microscopy study. Journal of Nanoparticle Research, 2014, 16, 1.	1.9	11

#	Article	IF	CITATIONS
19	Industrially benign super-compressible piezoresistive carbon foams with predefined wetting properties: from environmental to electrical applications. Scientific Reports, 2014, 4, 6933.	3.3	24
20	Low-Temperature Growth of Carbon Nanotubes on Bi- and Tri-metallic Catalyst Templates. Topics in Catalysis, 2013, 56, 522-526.	2.8	16
21	Thin micropatterned multi-walled carbon nanotube films for electrodes. Chemical Physics Letters, 2013, 583, 87-91.	2.6	15
22	Photo-Kelvin probe force microscopy for photocatalytic performance characterization of single filament of TiO2 nanofiber photocatalysts. Journal of Materials Chemistry A, 2013, 1, 5715.	10.3	37
23	Thermal management of micro hotspots in electric components with carbon nanotubes. International Journal of Nanotechnology, 2013, 10, 57.	0.2	0
24	Nanoparticle Dispersions. , 2013, , 729-776.		5
25	Sharp burnout failure observed in high current-carrying double-walled carbon nanotube fibers. Nanotechnology, 2012, 23, 015703.	2.6	11
26	Fabrication and characterization of single-walled carbon nanotube fiber for electronics applications. Carbon, 2012, 50, 5521-5524.	10.3	19
27	Inkjet-printed gas sensors: metal decorated WO3 nanoparticles and their gas sensing properties. Journal of Materials Chemistry, 2012, 22, 17878.	6.7	66
28	Synthesis and Photocatalytic Performance of Titanium Dioxide Nanofibers and the Fabrication of Flexible Composite Films from Nanofibers. Journal of Nanoscience and Nanotechnology, 2012, 12, 1421-1424.	0.9	19
29	Nitrogen-Doped Anatase Nanofibers Decorated with Noble Metal Nanoparticles for Photocatalytic Production of Hydrogen. ACS Nano, 2011, 5, 5025-5030.	14.6	137
30	Novel Printed Nanostructured Gas Sensors. Procedia Engineering, 2011, 25, 896-899.	1.2	14
31	Comparison of dye solar cell counter electrodes based on different carbon nanostructures. Thin Solid Films, 2011, 519, 8125-8134.	1.8	23
32	Enhanced photocatalytic activity of TiO2 nanofibers and their flexible composite films: Decomposition of organic dyes and efficient H2 generation from ethanol-water mixtures. Nano Research, 2011, 4, 360-369.	10.4	109
33	Lowâ€temperature growth of multiâ€walled carbon nanotubes by thermal CVD. Physica Status Solidi (B): Basic Research, 2011, 248, 2500-2503.	1.5	24
34	Thermal diffusivity of aligned multiâ€walled carbon nanotubes measured by the flash method. Physica Status Solidi (B): Basic Research, 2011, 248, 2508-2511.	1.5	12
35	Gas sensors based on anodic tungsten oxide. Sensors and Actuators B: Chemical, 2011, 153, 293-300.	7.8	90
36	CNT-based catalysts for H2 production by ethanol reforming. International Journal of Hydrogen Energy, 2010, 35, 12588-12595.	7.1	43

#	Article	IF	Citations
37	Moderate anisotropy in the electrical conductivity of bulk MWCNT/epoxy composites. Carbon, 2010, 48, 1918-1925.	10.3	29
38	Carbon nanotube based sensors and fluctuation enhanced sensing. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 1217-1221.	0.8	6
39	INCREASING CHEMICAL SELECTIVITY OF CARBON NANOTUBE-BASED SENSORS BY FLUCTUATION-ENHANCED SENSING. Fluctuation and Noise Letters, 2010, 09, 277-287.	1.5	10
40	Electrical Transport and Field-Effect Transistors Using Inkjet-Printed SWCNT Films Having Different Functional Side Groups. ACS Nano, 2010, 4, 3318-3324.	14.6	79
41	Electrical transport through single-wall carbon nanotube–anodic aluminum oxide–aluminum heterostructures. Nanotechnology, 2010, 21, 035707.	2.6	6
42	Three-Dimensional Carbon Nanotube Scaffolds as Particulate Filters and Catalyst Support Membranes. ACS Nano, 2010, 4, 2003-2008.	14.6	72
43	Towards one-pot synthesis of menthols from citral: Modifying Supported Ionic Liquid Catalysts (SILCAs) with Lewis and Brønsted acids. Journal of Catalysis, 2009, 263, 209-219.	6.2	42
44	Carbonâ€Nanotubeâ€Based Electrical Brush Contacts. Advanced Materials, 2009, 21, 2054-2058.	21.0	73
45	Inkjet printed resistive and chemicalâ€FET carbon nanotube gas sensors. Physica Status Solidi (B): Basic Research, 2008, 245, 2335-2338.	1.5	23
46	Drift effect of fluctuation enhanced gas sensing on carbon nanotube sensors. Physica Status Solidi (B): Basic Research, 2008, 245, 2343-2346.	1.5	6
47	Controlled CCVD Synthesis of Robust Multiwalled Carbon Nanotube Films. Journal of Physical Chemistry C, 2008, 112, 6723-6728.	3.1	28
48	Controlled Ohmic and nonlinear electrical transport in inkjet-printed single-wall carbon nanotube films. Physical Review B, 2008, 77, .	3.2	40
49	Chip cooling with integrated carbon nanotube microfin architectures. Applied Physics Letters, 2007, 90, 123105.	3.3	222
50	Magnetic-Field Induced Efficient Alignment of Carbon Nanotubes in Aqueous Solutions. Chemistry of Materials, 2007, 19, 787-791.	6.7	61
51	Nitric oxide gas sensors with functionalized carbon nanotubes. Physica Status Solidi (B): Basic Research, 2007, 244, 4298-4302.	1.5	56
52	Inkjet printing of transparent and conductive patterns of singleâ€walled carbon nanotubes and PEDOTâ€PSS composites. Physica Status Solidi (B): Basic Research, 2007, 244, 4336-4340.	1.5	104
53	Inkjet Printing of Electrically Conductive Patterns of Carbon Nanotubes. Small, 2006, 2, 1021-1025.	10.0	479
54	Laser soldering of flip-chips. Optics and Lasers in Engineering, 2006, 44, 112-121.	3.8	18

#	Article	IF	CITATION
55	Room temperature chemical deposition of palladium nanoparticles in anodic aluminium oxide templates. Nanotechnology, 2006, 17, 1459-1463.	2.6	15
56	Thermal oxidation of porous silicon: Study on structure. Applied Physics Letters, 2005, 86, 041501.	3.3	94
57	Laser-Induced Gold Deposition on p+-Si from Liquid Precursors: A Study on the Reduction of Gold Ions through Competing Dember and Seebeck Effects. Journal of Physical Chemistry B, 2005, 109, 6925-6928.	2.6	2
58	Origin and FEM-assisted evaluation of residual stress in thermally oxidized porous silicon. Computational Materials Science, 2005, 34, 123-128.	3.0	4