Roman Krahne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7212838/publications.pdf

Version: 2024-02-01

154 papers 7,589 citations

41 h-index

71061

83 g-index

157 all docs

157 docs citations

157 times ranked 10018 citing authors

#	Article	IF	Citations
1	Mixed Dimethylammonium/Methylammonium Lead Halide Perovskite Crystals for Improved Structural Stability and Enhanced Photodetection. Advanced Materials, 2022, 34, e2106160.	11.1	18
2	Enhanced Optical Spectroscopy for Multiplexed DNA and Protein-Sequencing with Plasmonic Nanopores: Challenges and Prospects. Analytical Chemistry, 2022, 94, 503-514.	3.2	25
3	Surfaceâ€Dependent Properties and Tunable Photodetection of CsPbBr ₃ Microcrystals Grown on Functional Substrates (Advanced Optical Materials 3/2022). Advanced Optical Materials, 2022, 10, .	3.6	0
4	Correlating Symmetries of Lowâ€Frequency Vibrations and Selfâ€Trapped Excitons in Layered Perovskites for Light Emission with Different Colors. Small, 2022, , 2106759.	5.2	10
5	Surfaceâ€Dependent Properties and Tunable Photodetection of CsPbBr ₃ Microcrystals Grown on Functional Substrates. Advanced Optical Materials, 2022, 10, 2101807.	3.6	1
6	Lowâ€Frequency Phonon Modes in Layered Silverâ€Bismuth Double Perovskites: Symmetry, Polarity, and Relation to Phase Transitions. Advanced Optical Materials, 2022, 10, .	3.6	6
7	Phase Transitions in Low-Dimensional Layered Double Perovskites: The Role of the Organic Moieties. Journal of Physical Chemistry Letters, 2021, 12, 280-286.	2.1	23
8	Mechanical switching of orientation-related photoluminescence in deep-blue 2D layered perovskite ensembles. Nanoscale, 2021, 13, 3948-3956.	2.8	4
9	Reversible Emission Tunability from 2Dâ€Layered Perovskites with Conjugated Organic Cations. Advanced Photonics Research, 2021, 2, 2100005.	1.7	10
10	Engineering the Optical Emission and Robustness of Metalâ€Halide Layered Perovskites through Ligand Accommodation. Advanced Materials, 2021, 33, e2008004.	11.1	23
11	Nanoporous Metals: From Plasmonic Properties to Applications in Enhanced Spectroscopy and Photocatalysis. ACS Nano, 2021, 15, 6038-6060.	7.3	120
12	Modeling Photodetection at the Graphene/Ag 2 S Interface. Physica Status Solidi - Rapid Research Letters, 2021, 15, 2100120.	1.2	1
13	Oneâ€Dimensional Epsilonâ€Nearâ€Zero Crystals. Advanced Photonics Research, 2021, 2, 2100053.	1.7	7
14	State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano, 2021, 15, 10775-10981.	7.3	705
15	Triple-decker layered perovskite materials. Nature, 2021, 597, 333-334.	13.7	2
16	Liquidâ€Phase Exfoliated Gallium Selenide for Lightâ€Driven Thinâ€Film Transistors. Advanced Electronic Materials, 2021, 7, 2001080.	2.6	18
17	Cavity and Dipole Resonances in Laterally Structured Metal-Insulator-Metal Nanocavities., 2021,,.		0
18	Fast Intrinsic Emission Quenching in Cs ₄ PbBr ₆ Nanocrystals. Nano Letters, 2021, 21, 8619-8626.	4.5	16

#	Article	IF	CITATIONS
19	Strong Light–Matter Interaction and Spontaneous Emission Reshaping via Pseudo avity Modes. Advanced Optical Materials, 2021, 9, 2101076.	3.6	2
20	Methylammonium Governs Structural and Optical Properties of Hybrid Lead Halide Perovskites through Dynamic Hydrogen Bonding. Chemistry of Materials, 2021, 33, 8524-8533.	3.2	14
21	Photonic Cavity Effects for Enhanced Efficiency in Layered Perovskite-Based Light-Emitting Diodes. Nanomaterials, 2021, 11, 2947.	1.9	3
22	Understanding and Controlling Mode Hybridization in Multicavity Optical Resonators Using Quantum Theory and the Surface Forces Apparatus. ACS Photonics, 2021, 8, 3517-3525.	3.2	8
23	Galvanic Replacement Reaction as a Route to Prepare Nanoporous Aluminum for UV Plasmonics. Nanomaterials, 2020, 10, 102.	1.9	20
24	Core/Shell CdSe/CdS Boneâ€Shaped Nanocrystals with a Thick and Anisotropic Shell as Optical Emitters. Advanced Optical Materials, 2020, 8, 1901463.	3.6	12
25	Angle and Polarization Selective Spontaneous Emission in Dyeâ€Doped Metal/Insulator/Metal Nanocavities. Advanced Optical Materials, 2020, 8, 1901215.	3.6	18
26	Robustness to High Temperatures of Al ₂ O ₃ -Coated CsPbBr ₃ Nanocrystal Thin Films with High-Photoluminescence Quantum Yield for Light Emission. ACS Applied Nano Materials, 2020, 3, 8167-8175.	2.4	26
27	Ultrafast all-optical switching enabled by epsilon-near-zero-tailored absorption in metal-insulator nanocavities. Communications Physics, 2020, 3, .	2.0	47
28	Biodegradable and Insoluble Cellulose Photonic Crystals and Metasurfaces. ACS Nano, 2020, 14, 9502-9511.	7.3	36
29	Metastable CdTe@HgTe Core@Shell Nanostructures Obtained by Partial Cation Exchange Evolve into Sintered CdTe Films Upon Annealing. Chemistry of Materials, 2020, 32, 2978-2985.	3.2	10
30	Composition-, Size-, and Surface Functionalization-Dependent Optical Properties of Lead Bromide Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 2079-2085.	2.1	37
31	Liquid Phase Exfoliated Indium Selenide Based Highly Sensitive Photodetectors. Advanced Functional Materials, 2020, 30, 1908427.	7.8	42
32	Temperature-Driven Transformation of CsPbBr ₃ Nanoplatelets into Mosaic Nanotiles in Solution through Self-Assembly. Nano Letters, 2020, 20, 1808-1818.	4.5	66
33	Nano- and microscale apertures in metal films fabricated by colloidal lithography with perovskite nanocrystals. Nanotechnology, 2020, 31, 185304.	1.3	2
34	Directional Anisotropy of the Vibrational Modes in 2D-Layered Perovskites. ACS Nano, 2020, 14, 4689-4697.	7.3	69
35	Hybridization of epsilon-near-zero modes via resonant tunneling in layered metal-insulator double nanocavities. Nanophotonics, 2019, 8, 1505-1512.	2.9	25
36	Nanoscale & Nanoscale Advances joint themed collection on halide perovskite nanocrystals. Nanoscale, 2019, 11, 8648-8650.	2.8	8

#	Article	IF	CITATIONS
37	Planar Aperiodic Arrays as Metasurfaces for Optical Near-Field Patterning. ACS Nano, 2019, 13, 5646-5654.	7.3	8
38	Simple fabrication of layered halide perovskite platelets and enhanced photoluminescence from mechanically exfoliated flakes. Nanoscale, 2019, 11, 8334-8342.	2.8	31
39	A Semi-Classical View on Epsilon-Near-Zero Resonant Tunneling Modes in Metal/Insulator/Metal Nanocavities. Nano Letters, 2019, 19, 3151-3160.	4.5	56
40	CsPbX ₃ /SiO _x (X = Cl, Br, I) monoliths prepared <i>via</i> a novel sol–gel route starting from Cs ₄ PbX ₆ nanocrystals. Nanoscale, 2019, 11, 18739-18745.	2.8	23
41	Giant-Shell CdSe/CdS Nanocrystals: Exciton Coupling to Shell Phonons Investigated by Resonant Raman Spectroscopy. Journal of Physical Chemistry Letters, 2019, 10, 399-405.	2.1	11
42	Revealing Photoluminescence Modulation from Layered Halide Perovskite Microcrystals upon Cyclic Compression. Advanced Materials, 2019, 31, e1805608.	11.1	16
43	Reduction of moisture sensitivity of PbS quantum dot solar cells by incorporation of reduced graphene oxide. Solar Energy Materials and Solar Cells, 2018, 183, 1-7.	3.0	68
44	Lasing from dot-in-rod nanocrystals in planar polymer microcavities. RSC Advances, 2018, 8, 13026-13033.	1.7	28
45	Benzoyl Halides as Alternative Precursors for the Colloidal Synthesis of Lead-Based Halide Perovskite Nanocrystals. Journal of the American Chemical Society, 2018, 140, 2656-2664.	6.6	490
46	Patterned tungsten disulfide/graphene heterostructures for efficient multifunctional optoelectronic devices. Nanoscale, 2018, 10, 4332-4338.	2.8	28
47	Lateral epitaxial heterojunctions in single nanowires fabricated by masked cation exchange. Nature Communications, 2018, 9, 505.	5.8	28
48	Enhancing the Performance of CdSe/CdS Dot-in-Rod Light-Emitting Diodes via Surface Ligand Modification. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5665-5672.	4.0	55
49	Planar Double-Epsilon-Near-Zero Cavities for Spontaneous Emission and Purcell Effect Enhancement. ACS Photonics, 2018, 5, 2287-2294.	3.2	65
50	Multiband Plasmonic Sierpinski Carpet Fractal Antennas. ACS Photonics, 2018, 5, 2418-2425.	3.2	34
51	Solution-processed silver sulphide nanocrystal film for resistive switching memories. Journal of Materials Chemistry C, 2018, 6, 13128-13135.	2.7	13
52	Effects of Oxygen Plasma on the Chemical, Light-Emitting, and Electrical-Transport Properties of Inorganic and Hybrid Lead Bromide Perovskite Nanocrystal Films. ACS Applied Nano Materials, 2018, 1, 5396-5400.	2.4	8
53	Engineering 3D Multi-Branched Nanostructures for Ultra- Sensing Applications. , 2018, , .		0
54	Robust and Bright Photoluminescence from Colloidal Nanocrystal/Al ₂ O ₃ Composite Films Fabricated by Atomic Layer Deposition. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22356-22362.	4.0	9

#	Article	lF	CITATIONS
55	Colloidal Monolayer \hat{l}^2 -In ₂ Se ₃ Nanosheets with High Photoresponsivity. Journal of the American Chemical Society, 2017, 139, 3005-3011.	6.6	105
56	Hotâ€Spot Engineering in 3D Multiâ€Branched Nanostructures: Ultrasensitive Substrates for Surfaceâ€Enhanced Raman Spectroscopy. Advanced Optical Materials, 2017, 5, 1600836.	3 . 6	32
57	From CsPbBr ₃ Nano-Inks to Sintered CsPbBr ₃ â€"CsPb<8Br ₅ Films via Thermal Annealing: Implications on Optoelectronic Properties. Journal of Physical Chemistry C, 2017, 121, 11956-11961.	1.5	96
58	Reversible Concentration-Dependent Photoluminescence Quenching and Change of Emission Color in CsPbBr ₃ Nanowires and Nanoplatelets. Journal of Physical Chemistry Letters, 2017, 8, 2725-2729.	2.1	50
59	Directional Fluorescence Spectral Narrowing in All-Polymer Microcavities Doped with CdSe/CdS Dot-in-Rod Nanocrystals. ACS Photonics, 2017, 4, 1761-1769.	3.2	42
60	Bright-Emitting Perovskite Films by Large-Scale Synthesis and Photoinduced Solid-State Transformation of CsPbBr ₃ Nanoplatelets. ACS Nano, 2017, 11, 10206-10213.	7.3	118
61	Laserâ€Induced Localized Growth of Methylammonium Lead Halide Perovskite Nanoâ€and Microcrystals on Substrates. Advanced Functional Materials, 2017, 27, 1701613.	7.8	38
62	Approaches for enhancing plasmon propagation in graphene waveguides., 2017,,.		0
63	Fully Solutionâ€Processed Conductive Films Based on Colloidal Copper Selenide Nanosheets for Flexible Electronics. Advanced Functional Materials, 2016, 26, 3670-3677.	7.8	46
64	Temperature, surface morphology and biochemical cues: A combined approach to influence the molecular conformation of Alpha-synuclein. Microelectronic Engineering, 2016, 158, 64-68.	1.1	3
65	Polymer-Free Films of Inorganic Halide Perovskite Nanocrystals as UV-to-White Color-Conversion Layers in LEDs. Chemistry of Materials, 2016, 28, 2902-2906.	3.2	152
66	Evolution of CsPbBr ₃ nanocrystals upon post-synthesis annealing under an inert atmosphere. Journal of Materials Chemistry C, 2016, 4, 9179-9182.	2.7	62
67	Broadband Amplified Spontaneous Emission and Random Lasing from Wurtzite CdSe/CdS "Giant-Shell― Nanocrystals. ACS Photonics, 2016, 3, 2083-2088.	3.2	38
68	Confined Acoustic Phonons in Colloidal Nanorod Heterostructures Investigated by Nonresonant Raman Spectroscopy and Finite Elements Simulations. Nano Letters, 2016, 16, 7664-7670.	4.5	17
69	Shape Approaches for Enhancing Plasmon Propagation in Graphene. ACS Photonics, 2016, 3, 2170-2175.	3.2	15
70	In situ microscopy of the self-assembly of branched nanocrystals in solution. Nature Communications, 2016, 7, 11213.	5.8	91
71	Selfâ€Assembled Dense Colloidal Cu ₂ Te Nanodisk Networks in P3HT Thin Films with Enhanced Photocurrent. Advanced Functional Materials, 2016, 26, 4535-4542.	7.8	19
72	Nanostructures for Photonics. , 2016, , 2827-2843.		0

#	Article	IF	Citations
73	Writing and Functionalisation of Suspended DNA Nanowires on Superhydrophobic Pillar Arrays. Small, 2015, 11, 134-140.	5.2	29
74	Electrical plasmon detection in graphene waveguides. Physical Review B, 2015, 91, .	1.1	16
75	UV Light Detection from CdS Nanocrystal Sensitized Graphene Photodetectors at kHz Frequencies. Journal of Physical Chemistry C, 2015, 119, 23859-23864.	1.5	30
76	3D Plasmonic nanostar structures for recyclable SERS applications. , 2015, , .		0
77	Synchrotron \hat{l} /4-FTIR highlights amyloid- \hat{l}^2 conformational changes under the effect of surface wettability and external agents. Vibrational Spectroscopy, 2015, 80, 30-35.	1.2	6
78	Superhydrophobic Surfaces Boost Fibril Self-Assembly of Amyloid \hat{l}^2 Peptides. ACS Applied Materials & Eamp; Interfaces, 2015, 7, 20875-20884.	4.0	26
79	Light-gated single CdSe nanowire transistor: photocurrent saturation and band gap extraction. Journal of Nanoparticle Research, 2015, 17, 1.	0.8	5
80	Nanocrystal Selfâ€Assembly into Hollow Domeâ€Shaped Microstructures by Slow Solvent Evaporation on Superhydrophobic Substrates. Particle and Particle Systems Characterization, 2015, 32, 524-528.	1.2	10
81	Singleâ∈Mode Lasing from Colloidal Waterâ∈Soluble CdSe/CdS Quantum Dotâ∈inâ∈Rods. Small, 2015, 11, 1328-1334.	5.2	70
82	3D Nanostar Dimers with a Subâ€10â€nm Gap for Singleâ€∮Fewâ€Molecule Surfaceâ€Enhanced Raman Scatterii Advanced Materials, 2014, 26, 2353-2358.	^{ng} . 11.1	263
83	Oxygen Sensitivity of Atomically Passivated CdS Nanocrystal Films. ACS Applied Materials & Company (1975) Across 1975 (1975) Across 2014, 6, 9517-9523.	4.0	17
84	Plasmonic Nanostructures: 3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering (Adv. Mater. 15/2014). Advanced Materials, 2014, 26, 2352-2352.	11.1	1
85	Nanocrystal Film Patterning by Inhibiting Cation Exchange via Electron-Beam or X-ray Lithography. Nano Letters, 2014, 14, 2116-2122.	4.5	46
86	Amyloid \hat{l}^2 Peptide Conformational Changes in the Presence of a Lipid Membrane System. Langmuir, 2014, 30, 3191-3198.	1.6	45
87	Bimetallic 3D Nanostar Dimers in Ring Cavities: Recyclable and Robust Surface-Enhanced Raman Scattering Substrates for Signal Detection from Few Molecules. ACS Nano, 2014, 8, 7986-7994.	7.3	101
88	Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering. Nanotechnology, 2014, 25, 235303.	1.3	49
89	Continuous-wave biexciton lasing at room temperature using solution-processed quantum wells. Nature Nanotechnology, 2014, 9, 891-895.	15.6	433
90	3D plasmonic nanostructures as building blocks for ultrasensitive Raman spectroscopy. , 2014, , .		0

#	Article	IF	CITATIONS
91	Plasmonic Nanostructures for Nanoscale Energy Delivery and Biosensing: Design Fabrication and Characterization., 2014,, 451-502.		O
92	Metal Structures as Advanced Materials in Nanotechnology. , 2014, , 615-669.		1
93	Cold field emission dominated photoconductivity in ordered three-dimensional assemblies of octapod-shaped CdSe/CdS nanocrystals. Nanoscale, 2013, 5, 7596.	2.8	8
94	Electrical Properties of Nanorods. Nanoscience and Technology, 2013, , 57-85.	1.5	0
95	Catalytic Properties of Nanorods. Nanoscience and Technology, 2013, , 215-240.	1.5	0
96	Physical Properties of Nanorods. Nanoscience and Technology, 2013, , .	1.5	17
97	Culn _{<i>x</i>} Ga _{1â€"<i>x</i>} S ₂ Nanocrystals with Tunable Composition and Band Gap Synthesized via a Phosphine-Free and Scalable Procedure. Chemistry of Materials, 2013, 25, 3180-3187.	3.2	65
98	Electrical contacts to nanorod networks at different length scales: From macroscale ensembles to single nanorod chains. Microelectronic Engineering, 2013, 111, 185-188.	1.1	5
99	A new route to produce efficient surface-enhanced Raman spectroscopy substrates: gold-decorated CdSe nanowires. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	8
100	Atomic Ligand Passivation of Colloidal Nanocrystal Films via their Reaction with Propyltrichlorosilane. Chemistry of Materials, 2013, 25, 1423-1429.	3.2	30
101	Broad spectral photocurrent enhancement in Au-decorated CdSe nanowires. Nanoscale, 2013, 5, 5334.	2.8	10
102	Optical Properties of Semiconductor Nanorods. Nanoscience and Technology, 2013, , 7-55.	1.5	3
103	Spatial analysis of the photocurrent generation and transport in semiconductor nanocrystal films. Physical Review B, 2012, 86, .	1.1	7
104	Optical phonon modes in ordered core-shell CdSe/CdS nanorod arrays. Physical Review B, 2012, 85, .	1.1	16
105	Nanomedicine. , 2012, , 1644-1644.		0
106	CdSe–Au nanorod networks welded by gold domains: a promising structure for nano-optoelectronic components. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	10
107	Nanostructures for Coloration (Organisms other than Animals). , 2012, , 1790-1803.		0
108	Nanoplasmonic structures for biophotonic applications: SERS overview. Annalen Der Physik, 2012, 524, 620-636.	0.9	18

#	Article	IF	Citations
109	Nano-FET., 2012, , 1543-1543.		O
110	Charge Transport in Nanoscale "All-Inorganic―Networks of Semiconductor Nanorods Linked by Metal Domains. ACS Nano, 2012, 6, 2940-2947.	7.3	46
111	Selfâ€assembled CdSe/CdS nanorod microâ€lasers fabricated from solution by capillary jet deposition. Laser and Photonics Reviews, 2012, 6, 678-683.	4.4	47
112	Blue-UV-Emitting ZnSe(Dot)/ZnS(Rod) Core/Shell Nanocrystals Prepared from CdSe/CdS Nanocrystals by Sequential Cation Exchange. ACS Nano, 2012, 6, 1637-1647.	7.3	138
113	Colloidal Inorganic Nanocrystals. , 2012, , 251-281.		0
114	Spatially resolved photoconductivity of thin films formed by colloidal octapod-shaped CdSe/CdS nanocrystals. Nanoscale, 2011, 3, 2964.	2.8	10
115	Amplified spontaneous emission from core and shell transitions in CdSe/CdS nanorods fabricated by seeded growth. Applied Physics Letters, 2011, 98, .	1.5	35
116	Charge Transport and Electrochemical Properties of Colloidal Greigite (Fe ₃ S ₄) Nanoplatelets. Chemistry of Materials, 2011, 23, 3762-3768.	3.2	60
117	Quantum Dots: Synthesis and Characterization. , 2011, , 219-270.		11
118	Optical and electrical properties of colloidal (spherical Au)-(spinel ferrite nanorod) heterostructures. Nanoscale, 2011, 3, 4647.	2.8	21
119	Physical properties of elongated inorganic nanoparticles. Physics Reports, 2011, 501, 75-221.	10.3	138
120	Quantum Dots: Synthesis and Characterization. , 2011, , 17-60.		1
121	Photoconduction Properties in Aligned Assemblies of Colloidal CdSe/CdS Nanorods. ACS Nano, 2010, 4, 1646-1652.	7.3	73
122	Phosphine-Free Synthesis of p-Type Copper(I) Selenide Nanocrystals in Hot Coordinating Solvents. Journal of the American Chemical Society, 2010, 132, 8912-8914.	6.6	232
123	Lasing in self-assembled microcavities of CdSe/CdS core/shell colloidal quantum rods. Nanoscale, 2010, 2, 931.	2.8	120
124	Phototransport in networks of tetrapod-shaped colloidal semiconductor nanocrystals. Nanoscale, 2010, 2, 2171.	2.8	28
125	Self-assembly of highly fluorescent semiconductor nanorods into large scale smectic liquid crystal structures by coffee stain evaporation dynamics. Journal of Physics Condensed Matter, 2009, 21, 264013.	0.7	42
126	A nanobiosensor to detect single hybridization events. Analyst, The, 2009, 134, 2458.	1.7	21

#	Article	IF	Citations
127	Probe Tips Functionalized with Colloidal Nanocrystal Tetrapods for Highâ€Resolution Atomic Force Microscopy Imaging. Small, 2008, 4, 2123-2126.	5.2	19
128	Interconnection of specific nano-objects by electron beam lithography — A controllable method. Materials Science and Engineering C, 2008, 28, 299-302.	3.8	2
129	Synthesis and Micrometer-Scale Assembly of Colloidal CdSe/CdS Nanorods Prepared by a Seeded Growth Approach. Nano Letters, 2007, 7, 2942-2950.	4.5	1,098
130	Confined Optical Phonon Modes in Aligned Nanorod Arrays Detected by Resonant Inelastic Light Scattering. Nano Letters, 2007, 7, 476-479.	4.5	46
131	Protein Conduction and Negative Differential Resistance in Large-Scale Nanojunction Arrays. Small, 2007, 3, 1184-1188.	5.2	40
132	Confinement effects on optical phonons in spherical, rod-, and tetrapod-shaped nanocrystals detected by Raman spectroscopy. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 483-486.	0.8	16
133	Fabrication and transport of large-scale molecular tunnel-junction arrays. Microelectronic Engineering, 2007, 84, 1585-1588.	1.1	3
134	Confinement Effects on Optical Phonons in Polar Tetrapod Nanocrystals Detected by Resonant Inelastic Light Scattering. Nano Letters, 2006, 6, 478-482.	4.5	35
135	Shape Dependence of the Scattering Processes of Optical Phonons in Colloidal Nanocrystals Detected by Raman Spectroscopy. Journal of Nanoelectronics and Optoelectronics, 2006, 1, 104-107.	0.1	6
136	Optical properties of colloidal nanocrystal spheres and tetrapods. Microelectronics Journal, 2005, 36, 552-554.	1.1	11
137	Measurement of the conductance of single conjugated molecules. Nature, 2005, 436, 677-680.	13.7	379
138	Optical properties of tetrapod-shaped CdTe nanocrystals. Applied Physics Letters, 2005, 87, 224101.	1.5	44
139	Nanoparticles and nanogaps: controlled positioning and fabrication. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 17, 498-502.	1.3	20
140	Fabrication of nanoscale gaps in integrated circuits. Applied Physics Letters, 2002, 81, 730-732.	1.5	65
141	Excitations Below the Kohn Mode; FIR-Absorption in Quantum Dots. Physica Scripta, 2002, T101, 136.	1.2	0
142	From single dots to interacting arrays. , 2002, , 213-235.		1
143	Inter-dot interaction in an array of elliptical quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 12, 892-895.	1.3	0
144	Far-infrared spectroscopy of tailored quantum wires, quantum dots and antidot arrays. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 14, 37-44.	1.3	5

#	Article	IF	CITATIONS
145	Far-infrared excitations below the Kohn mode: Internal motion in a quantum dot. Physical Review B, 2001, 63, .	1.1	26
146	Pillow-shape motion in antidot-arrays. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 6, 507-509.	1.3	0
147	Bernstein modes in density-modulated two-dimensional electron systems and quantum dots. Physical Review B, 2000, 61, R16319-R16322.	1.1	7
148	Excitation of two-dimensional plasmons with cross-grating couplers. Physical Review B, 2000, 62, 15345-15347.	1.1	7
149	Anticrossing of the one-dimensional plasmon and the Kohn's mode in periodically modulated quantum wires. Physical Review B, 1999, 60, R13974-R13976.	1.1	3
150	Anticyclotron motion in antidot arrays. Physical Review B, 1999, 60, 10680-10682.	1.1	11
151	Multiple cyclotron resonances in GaAs-AlxGa1â^'xAs quantum wells detected by resonant inelastic light scattering. Physical Review B, 1997, 56, 1037-1040.	1.1	4
152	Internal electron-electron interactions in one-dimensional systems detected by Raman spectroscopy. Physical Review B, 1996, 54, R14281-R14284.	1.1	33
153	Fabrication of nanoelectrodes for hybrid molecular-electronic devices. , 0, , .		0
154	Improved Efficiency of Lightâ€Emitting Diodes by Plasmonic Nanopatterning of the Chargeâ€Transfer Layer. Advanced Optical Materials, 0, , 2200156.	3.6	1