
Sungju Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7212397/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ir(NHC)â€Catalyzed Synthesis of βâ€Alkylated Alcohols via Borrowing Hydrogen Strategy: Influence of Bimetallic Structure. Advanced Synthesis and Catalysis, 2021, 363, 3090-3097.	2.1	13
2	Using plasmonically generated carriers as redox equivalents. MRS Bulletin, 2020, 45, 43-48.	1.7	25
3	The Chemical Potential of Plasmonic Excitations. Angewandte Chemie - International Edition, 2020, 59, 2085-2088.	7.2	51
4	The Chemical Potential of Plasmonic Excitations. Angewandte Chemie, 2020, 132, 2101-2104.	1.6	11
5	Isotope Effects in Plasmonic Photosynthesis. Angewandte Chemie - International Edition, 2020, 59, 22480-22483.	7.2	19
6	Isotope Effects in Plasmonic Photosynthesis. Angewandte Chemie, 2020, 132, 22666-22669.	1.6	4
7	Selective Branching of Plasmonic Photosynthesis into Hydrocarbon Production and Hydrogen Generation. ACS Energy Letters, 2019, 4, 2295-2300.	8.8	44
8	Plasmonic photosynthesis of C1–C3 hydrocarbons from carbon dioxide assisted by an ionic liquid. Nature Communications, 2019, 10, 2022.	5.8	142
9	Plasmonic Control of Multi-Electron Transfer and C–C Coupling in Visible-Light-Driven CO ₂ Reduction on Au Nanoparticles. Nano Letters, 2018, 18, 2189-2194.	4.5	358
10	Opportunities and Challenges of Solar-Energy-Driven Carbon Dioxide to Fuel Conversion with Plasmonic Catalysts. ACS Energy Letters, 2017, 2, 2058-2070.	8.8	168
11	Exploring crystal phase and morphology in the TiO 2 supporting materials used for visible-light driven plasmonic photocatalyst. Applied Catalysis B: Environmental, 2016, 198, 91-99.	10.8	20
12	Energy conversion of sub-band-gap light using naked carbon nanodots and rhodamine B. Nano Energy, 2016, 26, 479-487.	8.2	10
13	Tuning the Structural Color of a 2D Photonic Crystal Using a Bowl-like Nanostructure. ACS Applied Materials & Interfaces, 2016, 8, 15802-15808.	4.0	47
14	Interfacial Adsorption and Redox Coupling of Li ₄ Ti ₅ O ₁₂ with Nanographene for High-Rate Lithium Storage. ACS Applied Materials & Interfaces, 2015, 7, 16565-16572.	4.0	32
15	Kinetic and Mechanistic Insights into the All-Solid-State Z-Schematic System. Journal of Physical Chemistry C, 2014, 118, 29583-29590.	1.5	15
16	Enhancement in photocatalytic oxygen evolution via water oxidation under visible light on nitrogen-doped TiO2 nanorods with dominant reactive {102} facets. Catalysis Communications, 2014, 43, 11-15.	1.6	22
17	Carbon-doped TiO2 nanoparticles wrapped with nanographene as a high performance photocatalyst for phenol degradation under visible light irradiation. Applied Catalysis B: Environmental, 2014, 144, 893-899.	10.8	97
18	Hotâ€Electronâ€Transfer Enhancement for the Efficient Energy Conversion of Visible Light. Angewandte Chemie - International Edition, 2014, 53, 11203-11207.	7.2	92

Ѕимсји Үи

#	Article	IF	CITATIONS
19	Effect of valence band energy on the photocatalytic performance of N-doped TiO2 for the production of O2 via the oxidation of water by visible light. Journal of Molecular Catalysis A, 2013, 378, 221-226.	4.8	22
20	Effect of TiO2 crystalline phase on CO oxidation over CuO catalysts supported on TiO2. Journal of Molecular Catalysis A, 2013, 368-369, 72-77.	4.8	54
21	Preparation and characterization of Fe-doped TiO2 nanoparticles as a support for a high performance CO oxidation catalyst. Journal of Materials Chemistry, 2012, 22, 12629.	6.7	75
22	Design of an efficient photocatalytic reactor for the decomposition of gaseous organic contaminants in air. Chemical Engineering Journal, 2012, 187, 203-209.	6.6	18
23	A Combination of Two Visible-Light Responsive Photocatalysts for Achieving the Z-Scheme in the Solid State. ACS Nano, 2011, 5, 4084-4090.	7.3	203
24	Hot Carrier Extraction from Plasmonic-Photonic Superimposed Heterostructures . Journal of Chemical Physics, 0, , .	1.2	1