
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7212316/publications.pdf Version: 2024-02-01

IRKASCHNY

#	Article	IF	CITATIONS
1	Study of the structural stability and electronic properties of the C-doped boron nanomaterials. Solid State Communications, 2022, 350, 114773.	0.9	0
2	BxCyNz nanotubes decorated with tracks of fluorine: atomic structure, stability and electronic properties. Thin Solid Films, 2021, 727, 138675.	0.8	0
3	Structural and electronic properties of fluorinated boron nitride monolayers. European Physical Journal B, 2021, 94, 1.	0.6	4
4	Study of the functionalization of a hybrid BxCyNz sheet by adsorption of fluorine: Structural, electronic and magnetic properties. Chemical Physics Letters, 2020, 739, 136940.	1.2	4
5	LiZnN filled-tetrahedral compound: A first-principles study of the electronic, optical and effective mass properties. Journal of Solid State Chemistry, 2019, 280, 120974.	1.4	4
6	Electronic and optical properties of Ge doped graphene and BN monolayers. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	8
7	Simulated annealing and first-principles study of substitutional Ga-doped graphene. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	2
8	Effect of BN nanodomains on the mechanical properties of graphene monolayers. Solid State Communications, 2019, 290, 60-63.	0.9	3
9	Structural and electronic properties of double-walled boron nitride nanocones. Physica E: Low-Dimensional Systems and Nanostructures, 2018, 95, 125-131.	1.3	9
10	Structural, electronic and magnetic properties of chevron-type graphene, BN and BC 2 N nanoribbons. Journal of Solid State Chemistry, 2017, 248, 164-170.	1.4	7
11	Structural and electronic properties of linear carbon chains encapsulated by flattened nanotubes. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 84, 444-453.	1.3	11
12	Effects of hydrogen adsorption on the properties of double wall BN and (BN) C nanotubes. Journal of Solid State Chemistry, 2016, 233, 352-362.	1.4	1
13	Electric field effect on the electronic properties of double-walled carbon-doped boron-nitride nanotubes. Applied Physics A: Materials Science and Processing, 2014, 114, 1039-1048.	1.1	5
14	Effect of an electric field on the properties of BN Möbius stripes. Journal of Solid State Chemistry, 2014, 217, 120-126.	1.4	1
15	Effect of BN domains on the stability and electronic structure of carbon nanotubes. Solid State Communications, 2013, 168, 11-14.	0.9	6
16	Hydrogenated BN monolayers: A first principles study. European Physical Journal B, 2013, 86, 1.	0.6	10
17	Effects of deformation on the electronic properties of B–C–N nanotubes. Journal of Solid State Chemistry, 2013, 197, 254-260.	1.4	11
18	Effects of a transverse electric field on the electronic properties of single- and multi-wall BN nanotubes. Solid State Communications, 2013, 153, 40-45.	0.9	14

#	Article	IF	CITATIONS
19	Structural and electronic properties of BN Möbius stripes. European Physical Journal B, 2012, 85, 1.	0.6	6
20	First-principles calculations of BC4N nanostructures: stability and electronic structure. Applied Physics A: Materials Science and Processing, 2012, 108, 185-193.	1.1	9
21	Stability and electronic states of NC3 nanoribbons. Applied Physics A: Materials Science and Processing, 2011, 104, 55-60.	1.1	5
22	Stability and electronic properties of carbon nanotubes doped with transition metal impurities. European Physical Journal B, 2010, 74, 123-128.	0.6	11
23	Stability of vacancies in carbon nanocones. European Physical Journal B, 2010, 78, 347-351.	0.6	6
24	Effective mass properties of Al1â^'x B x N ordered alloys: aÂfirst-principles study. Applied Physics A: Materials Science and Processing, 2009, 95, 655-659.	1.1	13
25	On the structural properties of B–C–N nanotubes. Solid State Communications, 2009, 149, 222-226.	0.9	21
26	Electronic structure of defects in a boron nitride monolayer. European Physical Journal B, 2009, 67, 507-512.	0.6	151
27	Spin polarization in carbon nanostructures with disclinations. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 2315-2318.	0.9	6
28	Metal-free spin channels in graphitic boron–nitrogen nanostructures. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 5492-5497.	0.9	0
29	Structural and electronic properties of aluminium nitride nanocones. Nanotechnology, 2007, 18, 315706.	1.3	4
30	A theoretical investigation of defects in a boron nitride monolayer. Nanotechnology, 2007, 18, 495707.	1.3	160
31	Stability and electronic structure of BxNyCznanotubes. Journal of Physics Condensed Matter, 2006, 18, 10871-10879.	0.7	42
32	Facility for simultaneous dual-beam ion implantation. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 551, 200-207.	0.7	26
33	lon beam induced modification of gold thin films deposited over polymers. Nuclear Instruments & Methods in Physics Research B, 2004, 218, 308-312.	0.6	3
34	Synthesis of nano-sized SiC precipitates in Si by simultaneous dual-beam implantation of C + and Si + ions. Applied Physics A: Materials Science and Processing, 2003, 76, 827-835.	1.1	15
35	Prevention of impurity gettering in the RP/2 region of ion-implanted silicon by defect engineering. Nuclear Instruments & Methods in Physics Research B, 2002, 186, 298-302.	0.6	18
36	Metallic thin film thickness determination using electron probe microanalysis. X-Ray Spectrometry, 2001, 30, 253-259.	0.9	14

#	Article	IF	CITATIONS
37	Charge equilibration of He ions in the Si channel. Nuclear Instruments & Methods in Physics Research B, 2000, 161-163, 96-100.	0.6	3
38	Charge equilibration of energetic He ions in the Si channel. Nuclear Instruments & Methods in Physics Research B, 2000, 168, 321-328.	0.6	4
39	Ion-induced redistribution of palladium in polymethyl methacrylate. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 610-614.	0.6	8
40	Diffusion and solubility of Au implanted into the AZ1350 photoresist. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 615-620.	0.6	9
41	Copper gettering at half the projected ion range induced by low-energy channeling He implantation into silicon. Applied Physics Letters, 2000, 77, 972.	1.5	12
42	The effects of the annealing temperature on the formation of helium-filled structures in silicon. Nuclear Instruments & Methods in Physics Research B, 1999, 148, 329-333.	0.6	37
43	Charge equilibration process for channeled He ions along the Siã€^100〉 direction. Nuclear Instruments & Methods in Physics Research B, 1999, 148, 168-171.	0.6	5
44	Cavities in helium implanted and annealed silicon characterized by spectroscopic ellipsometry. Journal of Applied Physics, 1999, 86, 4160-4165.	1.1	26
45	Helium bubbles in silicon: Study of the residual helium content using elastic recoil detection analysis. Nuclear Instruments & Methods in Physics Research B, 1998, 136-138, 583-586.	0.6	11
46	Nucleation and growth of platelet bubble structures in He implanted silicon. Nuclear Instruments & Methods in Physics Research B, 1998, 136-138, 460-464.	0.6	32
47	Polymer thermal stability enhancement induced by high energy ion beam bombardment. Nuclear Instruments & Methods in Physics Research B, 1998, 141, 187-192.	0.6	5
48	Spatial distribution of defects in ion-implanted and annealed Si: The RP/2 effect. Nuclear Instruments & Methods in Physics Research B, 1998, 142, 493-502.	0.6	21
49	Polymer thermal protection induced by ion beam irradiation. Nuclear Instruments & Methods in Physics Research B, 1998, 134, 35-45.	0.6	5
50	Lithium Implantation into Fullerite. Fullerenes, Nanotubes, and Carbon Nanostructures, 1998, 6, 175-183.	0.6	0
51	Metal Gettering by Defective Regions in Carbon-Implanted Silicon. Solid State Phenomena, 1997, 57-58, 63-68.	0.3	6
52	Helium Induced Cavities in Silicon: Their Formation, Microstructure and Gettering Ability. Materials Research Society Symposia Proceedings, 1997, 469, 451.	0.1	12
53	Detection of Metastabile Defective Regions in Ion-Implanted Silicon by Means of Metal Gettering. Materials Research Society Symposia Proceedings, 1997, 469, 463.	0.1	11
54	Overpressurized bubbles versus voids formed in helium implanted and annealed silicon. Applied Physics Letters, 1997, 70, 732-734.	1.5	67

#	Article	IF	CITATIONS
55	Range parameter study of Au and Bi implanted into carbon nitride films. Nuclear Instruments & Methods in Physics Research B, 1997, 122, 8-12.	0.6	0
56	Changes in the photoresist inhibitor distribution after ion irradiation and thermal treatment. Nuclear Instruments & Methods in Physics Research B, 1997, 132, 660-670.	0.6	12
57	Very large sputtering yields of ion irradiated C60 films. Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 226, 217-222.	0.9	16
58	Impurity gettering effects in separation-by-implanted-oxygen (SIMOX) wafers: what getters what, where and how. Microelectronic Engineering, 1997, 36, 129-132.	1.1	7
59	Diffusion study of Kr, Rb and Xe implanted into positive and negative photoresist films. Nuclear Instruments & Methods in Physics Research B, 1996, 111, 51-58.	0.6	11
60	Anomalous depth profiles and diffusional behavior of noble gases implanted into photoresist films. Nuclear Instruments & Methods in Physics Research B, 1996, 116, 225-229.	0.6	0
61	Ion Implantation into Fullerene. Fullerenes, Nanotubes, and Carbon Nanostructures, 1996, 4, 535-552.	0.6	2
62	Thermal diffusion study of Xe and Cs implanted into a polymer film. Nuclear Instruments & Methods in Physics Research B, 1994, 88, 267-274.	0.6	2
63	Radiation induced diffusion of Xe to a polymer film. Radiation Effects and Defects in Solids, 1993, 125, 289-298.	0.4	10
64	Ion radiation induced diffusion of Xe implanted into a polymer film. Journal of Applied Physics, 1992, 72, 5139-5144.	1.1	3
65	Low-temperature diffusion study of Xe implanted into a polymer film. Nuclear Instruments & Methods in Physics Research B, 1991, 59-60, 1281-1284.	0.6	0
66	Radiation induced diffusion of Xe implanted into the AZ1350 polymer. Nuclear Instruments & Methods in Physics Research B, 1990, 46, 313-316.	0.6	5
67	Low temperature diffusion study of Xe implanted into a photoresist film. Physics Letters, Section A: General, Atomic and Solid State Physics, 1990, 148, 104-106.	0.9	10
68	Range and thermal-behavior studies of Au and Bi implanted into photoresist films. Physical Review B, 1990, 41, 6145-6153.	1.1	33