
Rodolfo Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7212019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Going with the flow or against the grain? The promise of vegetation for protecting beaches, dunes, and barrier islands from erosion. Frontiers in Ecology and the Environment, 2015, 13, 203-210.	1.9	170
2	3-D non-breaking regular wave interaction with submerged breakwaters. Coastal Engineering, 1996, 28, 229-248.	1.7	164
3	Hard Structures for Coastal Protection, Towards Greener Designs. Estuaries and Coasts, 2019, 42, 1709-1729.	1.0	137
4	Massive Influx of Pelagic Sargassum spp. on the Coasts of the Mexican Caribbean 2014–2020: Challenges and Opportunities. Water (Switzerland), 2020, 12, 2908.	1.2	134
5	Present and Future Challenges of Coastal Erosion in Latin America. Journal of Coastal Research, 2014, 71, 1-16.	0.1	91
6	Response of vegetated dune–beach systems to storm conditions. Coastal Engineering, 2016, 109, 53-62.	1.7	90
7	Beach response to wave energy converter farms acting as coastal defence. Coastal Engineering, 2014, 87, 97-111.	1.7	89
8	The role of beach and sand dune vegetation in mediating wave run up erosion. Estuarine, Coastal and Shelf Science, 2019, 219, 97-106.	0.9	81
9	An artificial reef improves coastal protection and provides a base for coral recovery. Journal of Coastal Research, 2016, 75, 467-471.	0.1	72
10	Renewables energies in Colombia and the opportunity for the offshore wind technology. Journal of Cleaner Production, 2019, 220, 529-543.	4.6	67
11	An approach to assess flooding and erosion risk for open beaches in a changing climate. Coastal Engineering, 2014, 87, 50-76.	1.7	61
12	Linear waves propagating over a rapidly varying finite porous bed. Coastal Engineering, 2002, 44, 239-260.	1.7	57
13	Land use changes and sea level rise may induce a "coastal squeeze―on the coasts of Veracruz, Mexico. Global Environmental Change, 2014, 29, 180-188.	3.6	57
14	Maintaining Tropical Beaches with Seagrass and Algae: A Promising Alternative to Engineering Solutions. BioScience, 2019, 69, 136-142.	2.2	56
15	Interaction of non-breaking directional random waves with submerged breakwaters. Coastal Engineering, 1996, 28, 249-266.	1.7	53
16	The role of fringing coral reefs on beach morphodynamics. Geomorphology, 2013, 198, 69-83.	1.1	43
17	A numerical–empirical approach for evaluating morphodynamic processes on gravel and mixed sand–gravel beaches. Marine Geology, 2007, 241, 1-18.	0.9	42
18	Exploring the co-occurrence between coastal squeeze and coastal tourism in a changing climate and its consequences. Tourism Management, 2019, 74, 43-54.	5.8	41

#	Article	IF	CITATIONS
19	A framework to evaluate the environmental impact of OCEAN energy devices. Renewable and Sustainable Energy Reviews, 2019, 112, 440-449.	8.2	36
20	Coastal risk mitigation by green infrastructure in Latin America. Proceedings of the Institution of Civil Engineers: Maritime Engineering, 2017, 170, 39-54.	1.4	35
21	Beach Erosion Driven by Natural and Human Activity at Isla del Carmen Barrier Island, Mexico. Journal of Coastal Research, 2014, 71, 62-74.	0.1	33
22	The Risk Reduction Benefits of the Mesoamerican Reef in Mexico. Frontiers in Earth Science, 2019, 7, .	0.8	32
23	A systemic view of potential environmental impacts of ocean energy production. Renewable and Sustainable Energy Reviews, 2021, 149, 111332.	8.2	32
24	Numerical implementation of the harmonic modified mild-slope equation. Coastal Engineering, 2005, 52, 391-407.	1.7	31
25	Coastal green infrastructure to mitigate coastal squeeze. Journal of Infrastructure Preservation and Resilience, 2021, 2, .	1.5	31
26	Resistance and Resilience: Facing the Multidimensional Challenges in Coastal Areas. Journal of Coastal Research, 2017, 77, 1-6.	0.1	30
27	A Framework to Manage Coastal Squeeze. Sustainability, 2020, 12, 10610.	1.6	30
28	Laboratory investigation of pressure gradients induced by plunging breakers. Coastal Engineering, 2011, 58, 722-738.	1.7	29
29	Human Impact on Coastal Resilience along the Coast of Veracruz, Mexico. Journal of Coastal Research, 2017, 77, 143-153.	0.1	29
30	Wave Energy in Tropical Regions: Deployment Challenges, Environmental and Social Perspectives. Journal of Marine Science and Engineering, 2019, 7, 219.	1.2	29
31	Hydrodynamics of a headland-bay beach—Nearshore current circulation. Coastal Engineering, 2010, 57, 160-175.	1.7	28
32	A new approach to probabilistic earthquake-induced tsunami risk assessment. Ocean and Coastal Management, 2016, 119, 68-75.	2.0	28
33	Dynamics of coastline changes in Mexico. Journal of Chinese Geography, 2019, 29, 1637-1654.	1.5	28
34	The Incorporation of Biophysical and Social Components in Coastal Management. Estuaries and Coasts, 2019, 42, 1695-1708.	1.0	28
35	Energy Yield Assessment from Ocean Currents in the Insular Shelf of Cozumel Island. Journal of Marine Science and Engineering, 2019, 7, 147.	1.2	27
36	ls ocean energy an alternative in developing regions? A case study in Michoacan, Mexico. Journal of Cleaner Production, 2020, 266, 121984.	4.6	27

#	Article	IF	CITATIONS
37	Simple settling velocity formula for calcareous sand. Journal of Hydraulic Research/De Recherches Hydrauliques, 2013, 51, 215-219.	0.7	26
38	Beach erosion and loss of protection environmental services in Cancun, Mexico. Ocean and Coastal Management, 2018, 156, 183-197.	2.0	26
39	On the Marine Energy Resources of Mexico. Journal of Marine Science and Engineering, 2019, 7, 191.	1.2	26
40	Manmade Vulnerability of the Cancun Beach System: The Case of Hurricane Wilma. Clean - Soil, Air, Water, 2012, 40, 911-919.	0.7	25
41	Classification of Beach Erosion Vulnerability on the Yucatan Coast. Coastal Management, 2016, 44, 333-349.	1.0	25
42	Does the Functional Richness of Plants Reduce Wave Erosion on Embryo Coastal Dunes?. Estuaries and Coasts, 2019, 42, 1730-1741.	1.0	24
43	El Niño outhern Oscillation Impacts on Global Wave Climate and Potential Coastal Hazards. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016464.	1.0	24
44	Natural Variability and Warming Signals in Global Ocean Wave Climates. Geophysical Research Letters, 2021, 48, e2021GL093622.	1.5	24
45	Measurements and Modelling of Small Scale Processes of Vegetation Preventing Dune Erosion. Journal of Coastal Research, 2017, 77, 19-27.	0.1	22
46	Evaluation of a Dynamic Bioremediation System for the Removal of Metal Ions and Toxic Dyes Using Sargassum Spp Journal of Marine Science and Engineering, 2020, 8, 899.	1.2	22
47	Reflection and transmission of tsunami waves by coastal structures. Applied Ocean Research, 2000, 22, 215-223.	1.8	21
48	Patterns and vertical loads in water shipping in systematic wet dam-break experiments. Ocean Engineering, 2020, 197, 106891.	1.9	21
49	Morphodynamic Evolution and Sediment Transport Processes of Cancun Beach. Journal of Coastal Research, 2013, 290, 1146-1157.	0.1	20
50	Criteria for Optimal Site Selection for Ocean Thermal Energy Conversion (OTEC) Plants in Mexico. Energies, 2021, 14, 2121.	1.6	20
51	Characterization of Risks in Coastal Zones: A Review. Clean - Soil, Air, Water, 2012, 40, 894-905.	0.7	19
52	The Influence of Climate Change on Coastal Erosion Vulnerability in Northeast Brazil. Coastal Engineering Journal, 2017, 59, 1740007-1-1740007-25.	0.7	19
53	Commercial Potential of Pelagic Sargassum spp. in Mexico. Frontiers in Marine Science, 2021, 8, .	1.2	19
54	Estimation of the velocity field induced by plunging breakers in the surf and swash zones. Experiments in Fluids, 2012, 52, 53-68.	1.1	18

#	Article	IF	CITATIONS
55	Effects of Roughness Loss on Reef Hydrodynamics and Coastal Protection: Approaches in Latin America. Estuaries and Coasts, 2019, 42, 1742-1760.	1.0	18
56	Morphological evolution of the sandspit at Tortugueros Beach, Mexico. Marine Geology, 2019, 407, 16-31.	0.9	18
57	Ten Commandments for Sustainable, Safe, and W/Healthy Sandy Coasts Facing Global Change. Frontiers in Marine Science, 2021, 8, .	1.2	18
58	Wave interaction with cylindrical porous piles. Ocean Engineering, 2003, 30, 1719-1740.	1.9	17
59	Beach cleaning costs. Ocean and Coastal Management, 2020, 188, 105118.	2.0	17
60	The Influence of the Chamber Configuration on the Hydrodynamic Efficiency of Oscillating Water Column Devices. Journal of Marine Science and Engineering, 2020, 8, 751.	1.2	16
61	Shoreline Dynamics and Coastal Dune Stabilization in Response to Changes in Infrastructure and Climate. Journal of Coastal Research, 2019, 92, 6.	0.1	16
62	Green Water on A Fixed Structure Due to Incident Bores: Guidelines and Database for Model Validations Regarding Flow Evolution. Water (Switzerland), 2019, 11, 2584.	1.2	15
63	Assessing Degrees of Anthropization on the Coast of Mexico from Ecosystem Conservation and Population Growth Data. Journal of Coastal Research, 2019, 92, 136.	0.1	15
64	The influence of oblique waves on the hydrodynamic efficiency of an onshore OWC wave energy converter. Renewable Energy, 2022, 183, 687-707.	4.3	15
65	Extended solution for waves travelling over a rapidly changing porous bottom. Ocean Engineering, 2003, 30, 437-452.	1.9	14
66	Impact of Inlet Management on the Resilience of a Coastal Lagoon: La Mancha, Veracruz, Mexico. Journal of Coastal Research, 2017, 77, 51-61.	0.1	14
67	The Conservational State of Coastal Ecosystems on the Mexican Caribbean Coast: Environmental Guidelines for Their Management. Sustainability, 2021, 13, 2738.	1.6	14
68	Post-nourishment beach scarp morphodynamics. Journal of Coastal Research, 2013, 65, 576-581.	0.1	13
69	Coastal Dunes and Plants: An Ecosystem-Based Alternative to Reduce Dune Face Erosion. Journal of Coastal Research, 2016, 75, 303-307.	0.1	13
70	Ecosystem Services to Enhance Coastal Resilience in Mexico: The Gap between the Perceptions of Decision-Makers and Academics. Journal of Coastal Research, 2017, 77, 116-126.	0.1	13
71	How Effective Were the Beach Nourishments at Cancun?. Journal of Marine Science and Engineering, 2020, 8, 388.	1.2	13
72	Climate drivers of directional wave power on the Mexican coast. Ocean Dynamics, 2020, 70, 1253-1265.	0.9	13

#	Article	IF	CITATIONS
73	Sargassum Influx on the Mexican Coast: A Source for Synthesizing Silver Nanoparticles with Catalytic and Antibacterial Properties. Applied Sciences (Switzerland), 2021, 11, 4638.	1.3	13
74	Modelling linear wave transformation induced by dissipative structures—Regular waves. Ocean Engineering, 2006, 33, 2150-2173.	1.9	12
75	Hydrodynamic behavior of a new wave energy convertor: The Blow-Jet. Ocean Engineering, 2015, 106, 252-260.	1.9	12
76	An experimental method to verify the failure of coastal structures by wave induced liquefaction of clayey soils. Coastal Engineering, 2017, 123, 1-10.	1.7	11
77	CFD Simulations of Multiphase Flows: Interaction of Miscible Liquids with Different Temperatures. Water (Switzerland), 2020, 12, 2581.	1.2	11
78	Green water loads using the wet dam-break method and SPH. Ocean Engineering, 2021, 219, 108392.	1.9	11
79	Understanding the Dynamics of a Coastal Lagoon: Drivers, Exchanges, State of the Environment, Consequences and Responses. Geosciences (Switzerland), 2021, 11, 301.	1.0	11
80	Transitional wave climate regions on continental and polar coasts in a warming world. Nature Climate Change, 2022, 12, 662-671.	8.1	11
81	Beach Erosion in San Benito Chiapas, Mexico: Assessment and Possible Solution. Journal of Coastal Research, 2014, 71, 114-121.	0.1	10
82	Innovative Engineering Solutions and Best Practices to Mitigate Coastal Risk. , 2015, , 55-170.		10
83	Determination of the Potential Thermal Gradient for the Mexican Pacific Ocean. Journal of Marine Science and Engineering, 2018, 6, 20.	1.2	10
84	Ecosystem-Based Management strategies to improve aquaculture in developing countries: Case study of Marismas Nacionales. Ecological Engineering, 2019, 130, 296-305.	1.6	10
85	Genetic algorithms to determine JONSWAP spectra parameters. Ocean Dynamics, 2020, 70, 561-571.	0.9	10
86	Developing a CNT-SPE Sensing Platform Based on Green Synthesized AuNPs, Using Sargassum sp Sensors, 2020, 20, 6108.	2.1	10
87	Reinforcement of vegetated and unvegetated dunes by a rocky core: A viable alternative for dissipating waves and providing protection?. Coastal Engineering, 2020, 158, 103675.	1.7	10
88	Assessing the Impact of a Winter Storm on the Beach and Dune Systems and Erosion Mitigation by Plants. Frontiers in Marine Science, 2021, 8, .	1.2	10
89	WAVE TRANSFORMATION AND WAVE-DRIVEN CIRCULATION ON NATURAL REEFS UNDER EXTREME HURRICANE CONDITIONS. Coastal Engineering Proceedings, 2011, 1, 28.	0.1	10
90	Green Synthesis of Homogeneous Gold Nanoparticles Using Sargassum spp. Extracts and Their Enhanced Catalytic Activity for Organic Dyes. Toxics, 2021, 9, 280.	1.6	10

#	Article	IF	CITATIONS
91	An Alternative Solution to Erosion Problems at Punta Bete-Punta Maroma, Quintana Roo, Mexico: Conciliating Tourism and Nature. Journal of Coastal Research, 2014, 71, 75-85.	0.1	9
92	Assessing Hydrokinetic Energy in the Mexican Caribbean: A Case Study in the Cozumel Channel. Energies, 2021, 14, 4411.	1.6	9
93	Use of Nanotechnology to Mitigate Biofouling in Stainless Steel Devices Used in Food Processing, Healthcare, and Marine Environments. Toxics, 2022, 10, 35.	1.6	9
94	Green water evolution on a fixed structure induced by incoming wave trains. Mechanics Based Design of Structures and Machines, 2022, 50, 3040-3068.	3.4	8
95	Violent water-structure interaction: Overtopping features and vertical loads on a fixed structure due to broken incident flows. Marine Structures, 2020, 74, 102816.	1.6	8
96	On the Evolution of Different Types of Green Water Events. Water (Switzerland), 2021, 13, 1148.	1.2	8
97	Interaction of oblique waves with an Oscillating Water Column device. Ocean Engineering, 2021, 228, 108931.	1.9	8
98	Environmental Assessment of the Impacts and Benefits of a Salinity Gradient Energy Pilot Plant. Energies, 2021, 14, 3252.	1.6	8
99	Renewable energy production in a Mexican biosphere reserve: Assessing the potential using a multidisciplinary approach. Science of the Total Environment, 2021, 776, 145823.	3.9	8
100	Coral Reef Geometry and Hydrodynamics in Beach Erosion Control in North Quintana Roo, Mexico. Frontiers in Marine Science, 2021, 8, .	1.2	8
101	Coastal Ecosystems as an Ecological Membrane. Journal of Coastal Research, 2020, 95, 97.	0.1	8
102	Understanding Drivers of Connectivity and Resilience Under Tropical Cyclones in Coastal Ecosystems at Puerto Morelos, Mexico. Journal of Coastal Research, 2020, 95, 128.	0.1	8
103	Experimental Investigation of the Hydrodynamic Performance of Land-Fixed Nearshore and Onshore Oscillating Water Column Systems with a Thick Front Wall. Energies, 2022, 15, 2364.	1.6	8
104	COMPARATIVE MORPHODYNAMICS BETWEEN EXPOSED AND REEF PROTECTED BEACHES UNDER HURRRICANE CONDITIONS. Coastal Engineering Proceedings, 2015, 1, 55.	0.1	7
105	Toward More Sustainable River Transportation in Remote Regions of the Amazon, Brazil. Applied Sciences (Switzerland), 2021, 11, 2077.	1.3	7
106	A Detailed Description of Flow-Deck Interaction in Consecutive Green Water Events. Journal of Offshore Mechanics and Arctic Engineering, 2021, 143, .	0.6	7
107	Towards Coastal Management of a Degraded System: Barra de Navidad, Jalisco, Mexico. Journal of Coastal Research, 2014, 71, 107-113.	0.1	6
108	Lake Zirahuen, Michoacan, Mexico: An approach to sustainable water resource management based on the chemical and bacterial assessment of its water body. Sustainable Chemistry and Pharmacy, 2015, 2, 1-11	1.6	6

#	Article	IF	CITATIONS
109	Developing a Holistic Approach to Assessing and Managing Coastal Flood Risk. , 2015, , 9-53.		6
110	Impact of High-Resolution Topographic Mapping on Beach Morphological Analyses Based on Terrestrial LiDAR and Object-Oriented Beach Evolution. ISPRS International Journal of Geo-Information, 2017, 6, 147.	1.4	6
111	Micro Sand Engine Beach Stabilization Strategy at Puerto Morelos, Mexico. Journal of Marine Science and Engineering, 2020, 8, 247.	1.2	6
112	Identification of Coastal Erosion Causes in Matanchén Bay, San Blas, Nayarit, Mexico. Journal of Coastal Research, 2014, 71, 93-99.	0.1	5
113	Coastal flood assessment due to extreme events at Ensenada, Baja California, Mexico. Ocean and Coastal Management, 2018, 165, 319-333.	2.0	5
114	Wave and wind energy potential including extreme events: A case study of Mexico. Journal of Coastal Research, 2018, 85, 1336-1340.	0.1	5
115	Anthropic Impact Assessment of Coastal Ecosystems in the Municipality of Puerto Colombia, NE Colombia. Journal of Coastal Research, 2019, 92, 112.	0.1	5
116	Assessing the current state and restoration needs of the beaches and coastal dunes of Marismas Nacionales, Nayarit, Mexico. Ecological Indicators, 2020, 119, 106859.	2.6	5
117	A simplified and open-source approach for multiple-valued water surface measurements in 2D hydrodynamic experiments. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	0.8	5
118	Spectral analysis of sea surface elevations produced by big storms: The case of hurricane Wilma. Regional Studies in Marine Science, 2020, 39, 101390.	0.4	5
119	Alternatives for Recovering the Ecosystem Services and Resilience of the Salamanca Island Natural Park, Colombia. Water (Switzerland), 2020, 12, 1513.	1.2	5
120	A Quantitative Methodology for Evaluating Coastal Squeeze Based on a Fuzzy Logic Approach: Case Study of Campeche, Mexico. Journal of Coastal Research, 2019, 92, 101.	0.1	5
121	A 3D boundary element method for analysing the hydrodynamic performance of a land-fixed oscillating water column device. Engineering Analysis With Boundary Elements, 2022, 138, 407-422.	2.0	5
122	A Review of Disturbances to the Ecosystems of the Mexican Caribbean, Their Causes and Consequences. Journal of Marine Science and Engineering, 2022, 10, 644.	1.2	5
123	Modelling linear wave transformation induced by dissipative structures—Random waves. Ocean Engineering, 2006, 33, 2174-2194.	1.9	4
124	Hydroâ€morphologic Revision of the Cuautla Channel at Nayarit, Mexico. Clean - Soil, Air, Water, 2012, 40, 920-925.	0.7	4
125	Characterization of Surface Evidence of Groundwater Flow Systems in Continental Mexico. Water (Switzerland), 2020, 12, 2459.	1.2	4
126	On the Estimation of the Surface Elevation of Regular and Irregular Waves Using the Velocity Field of Bubbles. Journal of Marine Science and Engineering, 2020, 8, 88.	1.2	4

#	Article	IF	CITATIONS
127	Interaction between Tourism Carrying Capacity and Coastal Squeeze in Mazatlan, Mexico. Land, 2021, 10, 900.	1.2	4
128	The relationships between environmental conditions and parallel ecosystems on the coastal dunes of the Mexican Caribbean. Geomorphology, 2022, 397, 108006.	1.1	4
129	Sand size variability inside the hopper of a trailing suction dredger for beach nourishment purposes. Geo-Marine Letters, 2019, 39, 513-520.	0.5	3
130	Beach Erosion Diagnosis and Green Intervention Alternatives in Chenkán Beach, Campeche, Mexico. Journal of Coastal Research, 2019, 92, 75.	0.1	3
131	Validation of Sea-Surface Temperature Data for Potential OTEC Deployment in the Mexican Pacific. Energies, 2021, 14, 1898.	1.6	3
132	Interactions between Nearshore and Shelf Dynamics under Hurricane Conditions: Implications for Exposed and Reef Protected Beaches. Journal of Coastal Research, 2019, 92, 55.	0.1	3
133	Design of Hybrid Ecosystem Based Strategies for the Control of Erosion at Sabancuy Beach, Campeche, Mexico. Journal of Coastal Research, 2019, 92, 85.	0.1	3
134	Modelling the Effects of the Artificial Opening of an Inlet: Salinity Distribution in a Coastal Lagoon. Journal of Coastal Research, 2019, 92, 128.	0.1	3
135	A Design Procedure for Anchors of Floating Ocean Current Turbines on Weak Rock. Energies, 2021, 14, 7347.	1.6	3
136	Level-Shift PWM Control of a Single-Phase Full H-Bridge Inverter for Grid Interconnection, Applied to Ocean Current Power Generation. Energies, 2022, 15, 1644.	1.6	3
137	New Assessment of Wave Energy in Relation to Geomorphological and Demographic Characteristics on the Pacific Coast of Baja California, Mexico. Frontiers in Marine Science, 2022, 9, .	1.2	3
138	An Assessment of the Financial Feasibility of an OTEC Ecopark: A Case Study at Cozumel Island. Sustainability, 2022, 14, 4654.	1.6	3
139	Multivariable Analysis of Transport Network Seismic Performance: Mexico City. Sustainability, 2020, 12, 9726.	1.6	2
140	Fine Spatial Scale, Frequent Morphological Monitoring of Urbanised Beaches to Improve Coastal Management. Journal of Marine Science and Engineering, 2021, 9, 550.	1.2	2
141	A CFD Numerical Study to Evaluate the Effect of Deck Roughness and Length on Shipping Water Loading. Water (Switzerland), 2021, 13, 2063.	1.2	2
142	Capturing Two Consecutive Green Water Events by Convolution. , 2019, , .		2
143	Identification of Areas Exposed to Storm Surge Flooding: Topographic Factors and Ecosystem Changes. Journal of Coastal Research, 2019, 92, 68.	0.1	2
144	Vulnerability of Subaerial and Submarine Landscapes: The Sand Falls in Cabo San Lucas, Mexico. Land, 2021, 10, 27.	1.2	2

#	Article	IF	CITATIONS
145	Computational Fluid Dynamics Applied to River Boat Hull Optimization. Marine Technology Society Journal, 2021, 55, 94-108.	0.3	2
146	Numerical Simulation of Bed Load and Suspended Load Sediment Transport Using Well-Balanced Numerical Schemes. Communications on Applied Mathematics and Computation, 0, , 1.	0.7	2
147	On the Evolution of Different Types of Green Water Events—Part II: Applicability of a Convolution Approach. Water (Switzerland), 2022, 14, 510.	1.2	2
148	Interconnections between Coastal Sediments, Hydrodynamics, and Ecosystem Profiles on the Mexican Caribbean Coast. Land, 2022, 11, 524.	1.2	2
149	Flow kinematics in the generation of different types of green water events with incident wave trains. Ocean Engineering, 2022, 258, 111519.	1.9	2
150	Momentum balance under breaking waves: Closure to discussion by T.E. Baldock of â€~Laboratory investigation of pressure gradients induced by plunging breakers'. Coastal Engineering, 2012, 68, 96-102.	1.7	1
151	FAILURE OF SEABEDS WITH A HIGH MUD CONTENT: AN EXPERIMENTAL STUDY. Coastal Engineering Proceedings, 2015, 1, 47.	0.1	1
152	A Theoretical Study of the Hydrodynamic Performance of an Asymmetric Fixed-Detached OWC Device. Water (Switzerland), 2021, 13, 2637.	1.2	1
153	Directional Wave Transformation Induced by a Cylindrical Permeable Pile. , 2002, , .		1
154	Evaluación del coeficiente de reflexión en diques rompeolas de piezas sueltas con perfil en S. Tecnologia Y Ciencias Del Agua, 2019, 10, 128-152.	0.1	1
155	Using Spatial Planning Tools to Identify Potential Areas for the Harnessing of Ocean Currents in the Mexican Caribbean. Land, 2022, 11, 665.	1.2	1
156	Estimación teórica de la potencia disponible en las fuentes de energÃa marina en México. Tecnologia Y Ciencias Del Agua, 0, , 01-36.	0.1	1
157	Investigation on Uplift Dynamic Pressures in Crown Wall Breakwaters. , 2017, , .		0
158	AN EXPERIMENTAL EVALUATION OF WAVE ENERGY DISSIPATION DUE TO SUBMERGED STRUCTURES. , 2013, , .		0
159	Integrating Biophysical Components in Coastal Engineering Practices. Journal of Coastal Research, 2019, 92, 1.	0.1	0
160	Optimización geométrica de un lente sumergido para focalizar la energÃa del oleaje. Tecnologia Y Ciencias Del Agua, 2019, 10, 117-146.	0.1	0
161	Simplified Method for the Identification of Erosion and Flooding Hazard Hotspots on Sandy Beaches. Journal of Coastal Research, 2020, 95, 1206.	0.1	0
162	Experiments on the Sinking of Marine Pipelines on Clayey Soils. Water (Switzerland), 2022, 14, 704.	1.2	0

#	Article	IF	CITATIONS
163	Extreme Value Analysis of Ocean Currents in the Mexican Caribbean Based on HYCOM Numerical Model Data. Frontiers in Marine Science, 0, 9, .	1.2	ο