
Serge Nyallang Nyamsi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7211580/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An outstanding effect of graphite in nano-MgH ₂ –TiH ₂ on hydrogen storage performance. Journal of Materials Chemistry A, 2018, 6, 10740-10754.	10.3	91
2	An optimization study on the finned tube heat exchanger used in hydride hydrogen storage system – analytical method and numerical simulation. International Journal of Hydrogen Energy, 2012, 37, 16078-16092.	7.1	88
3	Optimal design of metal hydride reactors based on CFD–Taguchi combined method. Energy Conversion and Management, 2013, 65, 322-330.	9.2	83
4	Three-dimensional modeling and sensitivity analysis of multi-tubular metal hydride reactors. Applied Thermal Engineering, 2013, 52, 97-108.	6.0	75
5	Theoretical study of a novel solar trigeneration system based on metal hydrides. Applied Energy, 2010, 87, 2050-2061.	10.1	67
6	Selection of metal hydrides-based thermal energy storage: Energy storage efficiency and density targets. International Journal of Hydrogen Energy, 2018, 43, 22568-22583.	7.1	57
7	A concept of combined cooling, heating and power system utilising solar power and based on reversible solid oxide fuel cell and metal hydrides. International Journal of Hydrogen Energy, 2018, 43, 18650-18663.	7.1	57
8	Metal Hydride Beds-Phase Change Materials: Dual Mode Thermal Energy Storage for Medium-High Temperature Industrial Waste Heat Recovery. Energies, 2019, 12, 3949.	3.1	37
9	Improvement in hydrogen storage characteristics of Mg-based metal hydrides by doping nonmetals with high electronegativity: A first-principle study. Computational Materials Science, 2013, 78, 83-90.	3.0	29
10	Multi-physics field modeling of biomass gasification syngas fueled solid oxide fuel cell. Journal of Power Sources, 2021, 512, 230470.	7.8	21
11	200 NL H2 hydrogen storage tank using MgH2–TiH2–C nanocomposite as H storage material. International Journal of Hydrogen Energy, 2021, 46, 19046-19059.	7.1	16
12	Assessment on the Long Term Performance of a LaNi5 based Hydrogen Storage System. Energy Procedia, 2012, 29, 720-730.	1.8	14
13	Optimal Design of Combined Two-Tank Latent and Metal Hydrides-Based Thermochemical Heat Storage Systems for High-Temperature Waste Heat Recovery. Energies, 2020, 13, 4216.	3.1	13
14	The Impact of Active and Passive Thermal Management on the Energy Storage Efficiency of Metal Hydride Pairs Based Heat Storage. Energies, 2021, 14, 3006.	3.1	12
15	Microstructure and improved hydrogen storage properties of Mg based alloy powders prepared by modified milling method. Powder Metallurgy, 2014, 57, 45-53.	1.7	9
16	Toward the design of interstitial nonmetals co-doping for Mg-based hydrides as hydrogen storage material. Journal of Materials Research, 2018, 33, 4080-4091.	2.6	7
17	Modelling of hydrogen thermal desorption spectra. Materials Today: Proceedings, 2018, 5, 10440-10449.	1.8	7
18	Insights into a Thermodynamically Optimal Synthesis of the Ternary Complex Hydride Mg ₂ FeH ₆ for High-Density Thermal Energy Storage. ACS Applied Energy Materials, 2021, 4, 5973-5984.	5.1	6

#	Article	IF	CITATIONS
19	Assessment of errors on the kinetic data by entropy generation analysis. International Journal of Hydrogen Energy, 2012, 37, 12365-12374.	7.1	5
20	Synthesis of Mg 2 FeH 6 assisted by heat treatment of starting materials. Materials Today: Proceedings, 2018, 5, 10533-10541.	1.8	5
21	Dehydrogenation of Metal Hydride Reactor-Phase Change Materials Coupled with Light-Duty Fuel Cell Vehicles. Energies, 2022, 15, 2982.	3.1	5
22	Insight into destabilization mechanism of Mg-based hydrides interstitially co-doped with nonmetals: a DFT study. European Physical Journal B, 2018, 91, 1.	1.5	1
23	The Theoretical Model with the Distribution of Impact Angle for Mechanical Alloying. Advanced Materials Research, 0, 347-353, 3361-3364.	0.3	0