
Carmen NÃ;jera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7211368/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Sonogashira Reaction:  A Booming Methodology in Synthetic Organic Chemistry. Chemical Reviews, 2007, 107, 874-922.	47.7	2,632
2	Recent advances in Sonogashira reactions. Chemical Society Reviews, 2011, 40, 5084.	38.1	1,308
3	Organocatalytic asymmetric conjugate additions. Tetrahedron: Asymmetry, 2007, 18, 299-365.	1.8	844
4	Chemicals from Alkynes with Palladium Catalysts. Chemical Reviews, 2014, 114, 1783-1826.	47.7	773
5	Catalytic Asymmetric Synthesis of α-Amino Acids. Chemical Reviews, 2007, 107, 4584-4671.	47.7	698
6	Stereodivergent Catalysis. Chemical Reviews, 2018, 118, 5080-5200.	47.7	350
7	Azomethine Ylides in Organic Synthesis. Current Organic Chemistry, 2003, 7, 1105-1150.	1.6	277
8	1,3-Dipolar cycloadditions of azomethine imines. Organic and Biomolecular Chemistry, 2015, 13, 8596-8636.	2.8	203
9	Catalytic asymmetric transfer hydrogenation of ketones: recent advances. Tetrahedron: Asymmetry, 2015, 26, 769-790.	1.8	193
10	Metal-catalyzed regiodivergent organic reactions. Chemical Society Reviews, 2019, 48, 4515-4618.	38.1	190
11	Synthesis of Ynones by Palladium-Catalyzed Acylation of Terminal Alkynes with Acid Chlorides. Journal of Organic Chemistry, 2004, 69, 1615-1619.	3.2	152
12	Conjugated Ynones in Organic Synthesis. Chemical Reviews, 2019, 119, 11110-11244.	47.7	134
13	NEW TRENDS IN PEPTIDE COUPLING REAGENTS. Organic Preparations and Procedures International, 2001, 33, 203-303.	1.3	127
14	Catalytic Enantioselective 1,3â€Dipolar Cycloaddition Reactions of Azomethine Ylides and Alkenes by Using Phosphoramidite–Silver(I) Complexes. Angewandte Chemie - International Edition, 2008, 47, 6055-6058.	13.8	120
15	Chemodivergent reactions. Chemical Society Reviews, 2020, 49, 7101-7166.	38.1	101
16	Metal complexes versus organocatalysts in asymmetric 1,3-dipolar cycloadditions. Journal of the Brazilian Chemical Society, 2010, 21, 377-412.	0.6	91
17	Phosphoramidite–Cu(OTf)2 Complexes as Chiral Catalysts for 1,3-Dipolar Cycloaddition of Iminoesters and Nitroalkenes. Organic Letters, 2013, 15, 2902-2905.	4.6	64
18	Synthesis of Prolines by Enantioselective 1,3â€Ðipolar Cycloaddition of Azomethine Ylides and Alkenes Catalyzed by Chiral Phosphoramidite‣ilver(I) Complexes. European Journal of Organic Chemistry, 2009, 2009, 5622-5634.	2.4	61

Carmen NÃijera

#	Article	IF	CITATIONS
19	Enantioselective synthesis of polysubstituted prolines by Binap-silver-catalyzed 1,3-dipolar cycloadditions. Tetrahedron: Asymmetry, 2008, 19, 2913-2923.	1.8	60
20	Graphene Quantum Dot Modified Fe ₃ O ₄ Nanoparticles Stabilize PdCu Nanoparticles for Enhanced Catalytic Activity in the Sonogashira Reaction. ChemCatChem, 2017, 9, 1442-1449.	3.7	59
21	The Hiyama Crossâ€Coupling Reaction: New Discoveries. Chemical Record, 2016, 16, 2521-2533.	5.8	56
22	Carbonâ€Derived Supports for Palladium Nanoparticles as Catalysts for Carbonâ€Carbon Bonds Formation. ChemCatChem, 2019, 11, 1792-1823.	3.7	54
23	Iron Oxide Nanoparticles Modified with Carbon Quantum Nanodots for the Stabilization of Palladium Nanoparticles: An Efficient Catalyst for the Suzuki Reaction in Aqueous Media under Mild Conditions. ChemCatChem, 2016, 8, 441-447.	3.7	52
24	Palladium and Bimetallic Palladium–Nickel Nanoparticles Supported on Multiwalled Carbon Nanotubes: Application to CarbonCarbon Bondâ€Forming Reactions in Water. ChemCatChem, 2015, 7, 1841-1847.	3.7	49
25	A fluorescence active catalyst support comprising carbon quantum dots and magnesium oxide doping for stabilization of palladium nanoparticles: Application as a recoverable catalyst for Suzuki reaction in water. Molecular Catalysis, 2017, 433, 12-19.	2.0	47
26	Applications of bimetallic PdCu catalysts. Catalysis Science and Technology, 2021, 11, 2652-2702.	4.1	47
27	Oximeâ€Derived Palladacycles: Applications in Catalysis. ChemCatChem, 2016, 8, 1865-1881.	3.7	45
28	Gold <i>versus</i> Silver atalyzed Intermolecular Hydroaminations of Alkenes and Dienes. Advanced Synthesis and Catalysis, 2011, 353, 3451-3466.	4.3	44
29	Magnesium oxide supported bimetallic Pd/Cu nanoparticles as an efficient catalyst for Sonogashira reaction. Journal of Catalysis, 2018, 363, 81-91.	6.2	44
30	Unexpected metal base-dependent inversion of the enantioselectivity in the asymmetric synthesis of α-amino acids using phase-transfer catalysts derived from cinchonidine. Tetrahedron: Asymmetry, 2002, 13, 2181-2185.	1.8	43
31	Enantioselective Synthesis of Polysubstituted Spiro-nitroprolinates Mediated by a (R,R)-Me-DuPhosÂ-AgF-Catalyzed 1,3-Dipolar Cycloaddition. Organic Letters, 2016, 18, 2926-2929.	4.6	41
32	Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron, 2022, 106-107, 132629.	1.9	40
33	The Effect of Phase-Transfer Catalysis in the 1,3-Dipolar Cycloaddition Reactions of Azomethine Ylides â~' Synthesis of Substituted Prolines Using AgOAc and Inorganic Base in Substoichiometric Amounts. European Journal of Organic Chemistry, 2001, 2001, 1971-1982.	2.4	35
34	Green synthesis of carbon quantum dots from vanillin for modification of magnetite nanoparticles and formation of palladium nanoparticles: Efficient catalyst for Suzuki reaction. Tetrahedron, 2017, 73, 5585-5592.	1.9	34
35	Microwave-assisted multicomponent diastereoselective 1,3-dipolar cycloaddition of ethyl glyoxylate derived azomethine ylides. Organic and Biomolecular Chemistry, 2013, 11, 662-675.	2.8	31
36	Synthesis of pyrrolizidines and indolizidines by multicomponent 1,3-dipolar cycloaddition of azomethine ylides. Pure and Applied Chemistry, 2019, 91, 575-596.	1.9	30

Carmen NÃijera

#	Article	IF	CITATIONS
37	Switching Diastereoselectivity in Catalytic Enantioselective (3+2) Cycloadditions of Azomethine Ylides Promoted by Metal Salts and Privileged Segphos-Derived Ligands. Journal of Organic Chemistry, 2019, 84, 10593-10605.	3.2	29
38	Efficient Diastereo―and Enantioselective Synthesis of <i>exo</i> â€Nitroprolinates by 1,3â€Dipolar Cycloadditions Catalyzed by Chiral Phosphoramiditeâ‹Silver(I) Complexes. Advanced Synthesis and Catalysis, 2014, 356, 3861-3870.	4.3	28
39	Catalysis and regioselectivity in hydrofunctionalization reactions of unsaturated carbon bonds. Part I. Russian Chemical Reviews, 2020, 89, 250-274.	6.5	28
40	Stereodivergent routes in organic synthesis: carbohydrates, amino acids, alkaloids and terpenes. Organic and Biomolecular Chemistry, 2020, 18, 1232-1278.	2.8	25
41	Primary Amine–2-Aminopyrimidine Chiral Organocatalysts for the Enantioselective Conjugate Addition of Branched Aldehydes to Maleimides. Synthesis, 2015, 47, 2199-2206.	2.3	24
42	Enantioselective Synthesis of exo-4-Nitroprolinates from NitroÂalkenes and Azomethine Ylides Catalyzed by Chiral PhosphorÂamidite·Silver(I) or Copper(II) Complexes. Synthesis, 2015, 47, 934-943.	2.3	23
43	Asymmetric Synthesis of α-Methyl α-Amino Acids through Diastereoselective Alkylation under Mild Reaction Conditions of an Iminic Alanine Template with a 1,2,3,6-Tetrahydro-2-pyrazinone Structure. European Journal of Organic Chemistry, 2000, 2000, 2809-2820.	2.4	22
44	Binap and Phosphoramidites as Privileged Chiral Ligands for the Metal atalyzed Enantioselective 1,3â€Dipolar Cycloaddition of Azomethine Ylides. Chemical Record, 2016, 16, 2430-2448.	5.8	18
45	Binap–silver-catalyzed enantioselective multicomponent 1,3-dipolar cycloaddition of azomethines ylides derived from ethyl glyoxylate. Tetrahedron: Asymmetry, 2015, 26, 674-678.	1.8	17
46	Mesoporous Metal Complex–Silica Aerogels for Environmentally Friendly Amination of Allylic Alcohols. ChemCatChem, 2015, 7, 87-93.	3.7	16
47	Asymmetric hydrogenation and transfer hydrogenation in the enantioselective synthesis of flavonoids. Organic Chemistry Frontiers, 2022, 9, 1165-1194.	4.5	16
48	Regio and diastereoselective multicomponent 1,3-dipolar cycloadditions between prolinate hydrochlorides, aldehydes and dipolarophiles for the direct synthesis of pyrrolizidines. Tetrahedron, 2015, 71, 9645-9661.	1.9	15
49	Sequential Metal-Free Thermal 1,3-Dipolar Cycloaddition of Unactivated Azomethine Ylides. Organic Letters, 2018, 20, 3522-3526.	4.6	15
50	Stereodivergent routes in organic synthesis: marine natural products, lactones, other natural products, heterocycles and unnatural compounds. Organic and Biomolecular Chemistry, 2020, 18, 1279-1336.	2.8	15
51	Multicomponent synthesis of unnatural pyrrolizidines using 1,3-dipolar cycloaddition of proline esters. Chemical Communications, 2013, 49, 11218.	4.1	14
52	Diastereoselective [3 + 2] vs [4 + 2] Cycloadditions of Nitroprolinates with α,β-Unsaturated Aldehydes and Electrophilic Alkenes: An Example of Total Periselectivity. Journal of Organic Chemistry, 2017, 82, 6298-6312.	3.2	14
53	Asymmetric Synthesis of Substituted Prolines by 1,3-Dipolar Cycloadditions of Azomethine Ylides from Chiral 6-Isopropyl-5-phenylmorpholin-2-ones. European Journal of Organic Chemistry, 2001, 2001, 3133.	2.4	13
54	Deacylative Reactions: Synthetic Applications. European Journal of Organic Chemistry, 2018, 2018, 2394-2405.	2.4	13

Carmen NÃijera

#	Article	IF	CITATIONS
55	Cooperative Catalysis with Coupled Chiral Induction in 1,3â€Dipolar Cycloadditions of Azomethine Ylides. Chemistry - A European Journal, 2018, 24, 8092-8097.	3.3	12
56	1-Butyl-3-methyl-2-(diphenylphosphino)imidazalolium hexafluorophosphate as an efficient ligand for recoverable palladium-catalyzed Suzuki-Miyaura reaction in neat water. Journal of Organometallic Chemistry, 2019, 901, 120941.	1.8	12
57	Multilayer graphene functionalized through thermal 1,3-dipolar cycloadditions with imino esters: a versatile platform for supported ligands in catalysis. Chemical Communications, 2019, 55, 7462-7465.	4.1	10
58	Synthesis of 3,3-Disubstituted 2-Oxindoles by Deacylative Alkylation of 3-Acetyl-2-oxindoles. Synthesis, 2017, 49, 5203-5210.	2.3	8
59	Synthesis of 3-substituted 3-fluoro-2-oxindoles by deacylative alkylation. Organic and Biomolecular Chemistry, 2019, 17, 482-489.	2.8	7
60	Deacylative Alkylation vs. Photoredox Catalysis in the Synthesis of 3,3'â€Bioxindoles. European Journal of Organic Chemistry, 2020, 2020, 3101-3109.	2.4	7
61	Palladium-catalyzed allylation and deacylative allylation of 3-acetyl-2-oxindoles with allylic alcohols. Tetrahedron, 2018, 74, 253-259.	1.9	6
62	Deacylative alkylation (DaA) of N-methyl-3-acetyl-2-oxindole for the synthesis of symmetrically 3,3-disubstituted 2-oxindoles. An access gate to anticancer agents and natural products Anais Da Academia Brasileira De Ciencias, 2018, 90, 1089-1099.	0.8	6
63	Diels-Alder reactions of 1-amino-1,3-dienes and related systems. Tetrahedron, 2021, 94, 132316.	1.9	6
64	Dual chiral silver catalyst in the synthetic approach to the core of hepatitis C virus inhibitor GSK 625433 using enantioselective 1,3-dipolar cycloaddition of azomethine ylides and electrophilic alkenes. Tetrahedron: Asymmetry, 2017, 28, 1423-1429.	1.8	5
65	Nitroprolinates as Nucleophiles in Michaelâ€ŧype Additions and Acylations. Synthesis of Enantiomerically Enriched Fused Aminoâ€pyrrolidinoâ€[1,2―a]pyrazinones and â€diketopiperazines. ChemCatChem, 2020, 12, 2014-2021.	3.7	5
66	Diastereoselective multicomponent phosphoramidate-aldehyde-dienophile (PAD) process for the synthesis of polysubstituted cyclohex-2-enyl-amine derivatives. Tetrahedron, 2020, 76, 130801.	1.9	4
67	Multicomponent Diastereoselective Synthesis of Indolizidines via 1,3-Dipolar Cycloadditions of Azomethine Ylides. Synthesis, 2016, 49, 299-309.	2.3	3
68	Diastereoselective multicomponent Amine-Aldehyde-Dienophile (AAD) process for the synthesis of polysubstituted cyclohex-2-enylamines. Tetrahedron, 2019, 75, 1315-1321.	1.9	2
69	Photocatalytic Homocoupling Transformations. Synthesis, 0, 53, .	2.3	1