Tea Ammunét

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7211320/publications.pdf

Version: 2024-02-01

		1040056	1199594	
13	391	9	12	
papers	citations	h-index	g-index	
14	14	14	597	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	CITATIONS
1	Deep learning tools are top performers in long non-coding RNA prediction. Briefings in Functional Genomics, 2022, 21, 230-241.	2.7	3
2	Host Adaptation in <i> Legionellales < /i > Is 1.9 Ga, Coincident with Eukaryogenesis. Molecular Biology and Evolution, 2022, 39, .</i>	8.9	15
3	Discovery of a Novel CIP2A Variant (NOCIVA) with Clinical Relevance in Predicting TKI Resistance in Myeloid Leukemias. Clinical Cancer Research, 2021, 27, 2848-2860.	7.0	11
4	Complex responses of global insect pests to climate warming. Frontiers in Ecology and the Environment, 2020, 18, 141-150.	4.0	241
5	Evolutionary ecology of an invasive geometrid. , 2016, , .		0
6	Consequences of asymmetric competition between resident and invasive defoliators: A novel empirically based modelling approach. Theoretical Population Biology, 2014, 92, 107-117.	1.1	6
7	Larval parasitism rate increases in herbivoreâ€damaged trees: a field experiment with cyclic birch feeding moths. Oikos, 2012, 121, 1525-1531.	2.7	12
8	Invading and resident defoliators in a changing climate: cold tolerance and predictions concerning extreme winter cold as a rangeâ€imiting factor. Ecological Entomology, 2012, 37, 212-220.	2.2	29
9	Impact of host plant quality on geometrid moth expansion on environmental and local population scales. Ecography, 2011, 34, 848-855.	4.5	12
10	Expansion of the winter moth outbreak range: no restrictive effects of competition with the resident autumnal moth. Ecological Entomology, 2010, 35, 45-52.	2.2	14
11	Responses of generalist invertebrate predators to pupal densities of autumnal and winter moths under field conditions. Ecological Entomology, 2009, 34, 709-717.	2.2	11
12	Larval parasitism of the autumnal moth reduces feeding intensity on the mountain birch. Oecologia, 2009, 159, 539-547.	2.0	11
13	Reversed Impacts by Specialist Parasitoids and Generalist Predators May Explain a Phase Lag in Moth Cycles: A Novel Hypothesis and Preliminary Field Tests. Annales Zoologici Fennici, 2009, 46, 380-393.	0.6	23