Tobias Hirsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7211108/publications.pdf Version: 2024-02-01

TORIAS HIDSCH

#	Article	IF	CITATIONS
1	Dynamics and control of parabolic trough collector loops with direct steam generation. Solar Energy, 2007, 81, 268-279.	6.1	108
2	Techno-economic analysis of combined concentrating solar power and desalination plant configurations in Israel and Jordan. Desalination and Water Treatment, 2012, 41, 9-25.	1.0	52
3	A Direct Steam Generation Solar Power Plant With Integrated Thermal Storage. Journal of Solar Energy Engineering, Transactions of the ASME, 2010, 132, .	1.8	50
4	Advancements in the Field of Direct Steam Generation in Linear Solar Concentrators—A Review. Heat Transfer Engineering, 2014, 35, 258-271.	1.9	48
5	Steam temperature stability in a direct steam generation solar power plant. Solar Energy, 2011, 85, 660-668.	6.1	46
6	Shadow camera system for the generation of solar irradiance maps. Solar Energy, 2017, 157, 157-170.	6.1	39
7	Optimization of parabolic trough power plant operations in variable irradiance conditions using all sky imagers. Solar Energy, 2020, 198, 434-453.	6.1	26
8	Simulation of thermal fluid dynamics in parabolic trough receiver tubes with direct steam generation using the computer code ATHLET. Kerntechnik, 2014, 79, 175-186.	0.2	23
9	Transient Models and Characteristics of Once-through Line Focus Systems. Energy Procedia, 2015, 69, 626-637.	1.8	20
10	Field Test of Water-Steam Separators for Direct Steam Generation in Parabolic Troughs. Journal of Solar Energy Engineering, Transactions of the ASME, 2008, 130, .	1.8	19
11	The first version of the SolarPACES guideline for bankable STE Yield assessment. AIP Conference Proceedings, 2017, , .	0.4	18
12	Validation of spatially resolved all sky imager derived DNI nowcasts. AIP Conference Proceedings, 2017, , .	0.4	16
13	Numerical investigation of severe slugging under conditions of a parabolic trough power plant with direct steam generation. Solar Energy, 2016, 133, 567-585.	6.1	14
14	Start-Up Modeling for Annual CSP Yield Calculations. Journal of Solar Energy Engineering, Transactions of the ASME, 2012, 134, .	1.8	13
15	Optimization of cleaning strategies based on ANN algorithms assessing the benefit of soiling rate forecasts. AIP Conference Proceedings, 2019, , .	0.4	9
16	Modelling an automatic controller for parabolic trough solar fields under realistic weather conditions. AIP Conference Proceedings, 2018, , .	0.4	8
17	Analysis and potential of once-through steam generators in line focus systems – Final results of the DUKE project. AIP Conference Proceedings, 2016, , .	0.4	7
18	Design of a Phase Separation System for a Direct Steam Generation Parabolic Trough Collector Field. Journal of Solar Energy Engineering, Transactions of the ASME, 2008, 130, .	1.8	6

TOBIAS HIRSCH

#	Article	IF	CITATIONS
19	Techno-Economic Optimization of Molten Salt Concentrating Solar Power Parabolic Trough Plants With Packed-Bed Thermocline Tanks. Journal of Solar Energy Engineering, Transactions of the ASME, 2020, 142, .	1.8	6
20	Artificial Learning Dispatch Planning for Flexible Renewable-Energy Systems. Energies, 2020, 13, 1517.	3.1	5
21	Virtual solar field - An opportunity to optimize transient processes in line-focus CSP power plants. AIP Conference Proceedings, 2017, , .	0.4	3
22	An approach to DNI transients characterization for system evaluation. AIP Conference Proceedings, 2017, , .	0.4	3
23	Artificial Learning Dispatch Planning with Probabilistic Forecasts: Using Uncertainties as an Asset. Energies, 2020, 13, 616.	3.1	3
24	Techno-economic assessment for large scale thermocline filler TES systems in a molten salt parabolic trough plant. AIP Conference Proceedings, 2018, , .	0.4	2
25	FRED: The Flexible Renewable Energy System Dispatch Optimizer. Journal of Solar Energy Engineering, Transactions of the ASME, 2019, 141, .	1.8	2
26	Evaluating the Potential Benefit of Using Nowcasting Systems to Improve the Yield of Parabolic Trough Power Plants with Single-Phase HTF. Energies, 2021, 14, 773.	3.1	1
27	State-of-the-Art Measurement Instrumentation and Most Recent Measurement Techniques for Parabolic Trough Collector Fields. Energies, 2021, 14, 7166.	3.1	1
28	Parabolic trough field control utilizing all sky imager irradiance data – A comprehensive robustness analysis. Solar Energy, 2022, 239, 170-178.	6.1	1
29	Development of training simulator software for molten salt parabolic trough test platform. AIP Conference Proceedings, 2019, , .	0.4	Ο
30	Simulation of potential enhancements in parabolic trough solar field start-up controllers using nowcasting systems. AIP Conference Proceedings, 2019, , .	0.4	0
31	Dynamical Behavior of CSP Plants. , 2021, , 1-27.		Ο
32	Dynamical Behavior of CSP Plants. , 2022, , 187-213.		0
33	Using DNI forecasts provided by all sky imager to improve control of parabolic trough solar fields. AIP Conference Proceedings, 2022,	0.4	0