Muhammad Hamid Raza

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/7210379/muhammad-hamid-raza-publications-by-citations.pdf$

Version: 2024-04-03

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

6 107 10 12 h-index g-index citations papers 6.8 152 13 3.09 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
12	Toward Optimized Radial Modulation of the Space-Charge Region in One-Dimensional SnO-NiO Core-Shell Nanowires for Hydrogen Sensing. <i>ACS Applied Materials & Discretials &</i>	o ∂ ·5	32
11	Gas Sensing of NiO-SCCNT CoreBhell Heterostructures: Optimization by Radial Modulation of the Hole-Accumulation Layer. <i>Advanced Functional Materials</i> , 2020 , 30, 1906874	15.6	18
10	A Self-Limited Atomic Layer Deposition of WS2 Based on the Chemisorption and Reduction of Bis(t-butylimino)bis(dimethylamino) Complexes. <i>Chemistry of Materials</i> , 2019 , 31, 1881-1890	9.6	14
9	Structure, Defects, and Magnetism of Electrospun Hematite Nanofibers Silica-Coated by Atomic Layer Deposition. <i>Langmuir</i> , 2020 , 36, 1305-1319	4	13
8	Optimization of the Activity of Ni-Based Nanostructures for the Oxygen Evolution Reaction. <i>ACS Applied Energy Materials</i> , 2018 , 1, 4554-4563	6.1	11
7	Vertically aligned TiO2/ZnO nanotube arrays prepared by atomic layer deposition for photovoltaic applications. <i>Korean Journal of Chemical Engineering</i> , 2019 , 36, 1157-1163	2.8	8
6	Morphology-controlled MoS by low-temperature atomic layer deposition. <i>Nanoscale</i> , 2020 , 12, 20404-2	0 / 4. 1 /2	6
5	Mesoporous WC Films with NiO-Protected Surface: Highly Active Electrocatalysts for the Alkaline Oxygen Evolution Reaction. <i>ChemSusChem</i> , 2021 , 14, 4708-4717	8.3	2
4	SnO2-SiO2 1D Core-Shell Nanowires Heterostructures for Selective Hydrogen Sensing. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100939	4.6	1
3	CNT/AlO core-shell nanostructures for the electrochemical detection of dihydroxybenzene isomers. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 14064-14074	3.6	1
2	ALD-Coated Mesoporous Iridium-Titanium Mixed Oxides: Maximizing Iridium Utilization for an Outstanding OER Performance. <i>Advanced Materials Interfaces</i> ,2102035	4.6	O
1	On the plasmon-assisted detection of a 1585 cml mode in the 532 nm Raman spectra of crystalline Fe2O3/polycrystalline NiO core/shell nanofibers. <i>Applied Physics Letters</i> , 2021 , 118, 251105	3.4	0